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1 Introduction

Economic and financial time series exhibit many distinctive features such as trends, cycles, serial

correlation, time-varying volatility, and breaks. Summarizing those features in a group of variables by

means of a few pervasive common components is useful for developing parsimonious models. It can

also provide evidence regarding the relevance of economic theories that imply such common features.

Indeed, in most applications of large-scale factor models, economic theory has important implications

that can be tested with data. An example is given by the restricted factor model for sectoral prices

proposed by Reis and Watson (2010). In that paper, the authors model sectoral price indices in the

US as a function of few unobserved factors, and ask whether one of them can be understood as a “pure

inflation”factor, in the sense that it moves all absolute prices up or down by the same amount, leaving

relative prices unchanged. The restriction is then that the loadings of at least one of the factors are

constant in all sectors.

A second example is found in Chamberlain and Rothschild (1983) who, in addition to introducing

the concept of “approximate factor model”, nowadays widely popular in the literature of factor models

with large cross-sectional (N) and time-series (T ) dimensions, investigate the question of whether

investors, by allocating their purchases among many assets, can create a portfolio that is riskless, has

unitary cost, and yields a positive return. Specifically, they show that a riskless asset will exist unless

the sequence of cross-sectional covariance matrices that characterizes market returns has the same

structure as it would have if there were a random event which affected the returns of all assets in

precisely the same way. In that context, testing that all the loadings of at least one of the factors are

constant amounts to test for the absence of a riskless asset in the economy.1

Hypotheses testing in a large N , large T factor model often means, like in the aforementioned

examples, restricting an entire vector of factors, factor loadings or both. Because factors and factor

loadings are unobserved and asymptotic theory must account for situations in which both N and T

go to infinity jointly, standard results need not apply. Moreover, the number of restrictions might

grow with N , T or both. In this regard, issues with classical tests when there are many regressors or

many restrictions are well documented. For instance, Berndt and Savin (1977) confirm the existence

of considerable conflicts among the classical tests when the number of restrictions is comparable to

the sample size. Similarly, Evans and Savin (1982) show that conflicts are more likely to appear

when the ratio of the number of restrictions to the difference between the number of observations
1 Intuitively, if all assets are affected by the same random event, the market will not allow investors to diversify risks

so effectively that they can create a riskless portfolio with a positive return.
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and the number of parameters is large. There are situations, though, in which under some additional

conditions, an appropriately standardized version of the classical test statistics is still asymptotically

normal (see Anatolyev (2012) for a discussion in the linear regression model).

Another issue is that in an approximate factor model the dependence structure of the errors is

generally left unspecified and therefore the likelihood function is unknown. As is well known, the usual

asymptotic chi-squared distribution for the likelihood-ratio test statistic is based on the assumptions

that the data come from a correctly specified model and that the parameters satisfy the null hypothesis.

In general, the likelihood-ratio statistic no longer follows an asymptotic chi-squared distribution when

the model is misspecified, even when the null hypothesis is true (Kent (1982)).

The purpose of our paper is to develop a hypothesis testing framework in which the number of

restrictions entering the null hypothesis grows with the sample size, possibly at a rate of N + T .

Specifically, we propose a simple testing procedure based on the —properly recentered and rescaled—

difference of the residual sum of squares from the restricted and unrestricted versions of model, and

obtain the asymptotic distribution of the test statistic. Interestingly, our framework remains valid

even when both times-series and cross-sectional dependence among error terms is allowed, as long as

this dependence is weak enough.

We initially assume that idiosyncratic components are iid, and then we extend our analysis to

the case of weak dependence. Given the similarity of our test statistic with the F−test, it is perhaps

not surprising that, in the iid case, we find that the classical result for testing the linear regression

model extends to the contest of large factor models. Specifically, the standard χ2 result with degrees

of freedom equal to the number of restrictions ν is extended to the case ν = O(N + T ) by recentering

and rescaling the difference of the restricted and unrestricted residual sum of squares by ν and 2ν,

respectively, in order to obtain a standard normal limiting distribution. The asymptotic distribution

of the test statistic does not depend on factors nor other unobserved quantities so practical imple-

mentation is straightforward, and only requires to estimate the restricted and unrestricted models to

compute the corresponding sums of squared residuals.

We then introduce cross-sectional correlation, although maintaining the assumption of time-series

independence, in the idiosyncratic components to obtain our second asymptotic result. Interestingly,

the presence of cross-sectional weak dependence in the errors introduces a variance correction but

leaves the mean ν unchanged. We characterize the variance expression by a simple scalar, that can be

interpreted as a measure of the average squared correlations of the error terms, and provide a consistent

estimator for this quantity. Although the resulting test statistic could be interpreted as a particular
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way of pooling individual test statistics performed for each series, it differs from the previous ones in

the related literature in that the pooling is done over the cross-section dimension i and time-series

dimension t at the same time and, without assuming independence over i.

Finally, we allow for both serial and cross-sectional correlation and obtain that, in contrast to

the first two cases, the recentering and rescaling factors depend on both the factors and on the

dependence structure of the error components. The rescaling factor can be decomposed into three

components: i) the variance of the iid case, ii) a term that captures the variance inflation due to

cross-sectional dependence in the errors, and iii) another term, which now also involves factors, which

corrects for the presence of times-series dependence. Remarkably, although the dependence structure

of the unobservables is left partially unmodeled, our test statistic, which resembles a likelihood-ratio

type test statistic, still has a limiting standard normal distribution since the scaling factor that affect

each of the chi-squared terms is correct on average.

In order to assess size and power properties of the testing procedures in small samples, in Section 4

we perform a series of Monte Carlo experiments for a variety of settings, starting from iid error terms

and moving on to situations with both heterogeneous cross-sectional and times-series weak dependence

in the idiosyncratic components, under different assumptions about factors dynamics. We find that the

testing procedures have good size and power properties under correct specification. More importantly,

the performance of the most robust version of the test is satisfactory despite the fact that it involves

estimation of additional quantities to account for cross-sectional and time-series correlations.

We then provide an application of the test by taking the data in Reis and Watson (2010) and

reconsidering their hypothesis of the existence of a pure inflation factor in the US price indices. Not

surprisingly, and in line with their finding that individual t-tests rejected the null of unit loading 30%

of the times at the 5% level, the null of the presence of one factor with constant loadings is strongly

rejected under the three versions of the test. We also estimate a restricted version of the model at a

more disaggregated level by allowing for heterogeneity across three and thirteen subcategories and find

that again the tests reject the null hypothesis of homogeneous loading within groups. Interestingly, a

more detailed inspection of the factor loading estimates suggest that in the model with three groups

although there seem to be moderate discrepancy in the loadings of durables, non durables and services,

there is substantial heterogeneity within those groups when we allow for a higher level of disaggregation.

Although for clarity of exposition we focus on the null that the loadings of one of the factors are

constant in all the series, the testing procedure we develop and the asymptotic results we provide

can easily accommodate other situations. For instance, in panel data it is typically assumed that
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the unobserved individual-specific heterogeneity is fixed across time, but there are several cases in

which this assumption may not hold; hence, another potentially interesting case is that of testing for

constant individual effects. Analogously, our approach can also be used to test the fixed effect with

time dummies panel data model versus the interactive fixed effects model of Bai (2009) in the context

of both large N and T .

The structure of the paper is as follows. In Section 2, we introduce the model in more detail,

discuss the main assumptions, and define the null hypothesis of interest. In Section 3 we describe the

test statistics and derive their asymptotic properties under different assumptions about the errors of

the model. Practical implementation issues together with a detailed Monte Carlo evaluation of the

testing procedures in terms of size and power are given in Section 4; while in Section 5 we revisit Reis

and Watson (2010)’s hypothesis of existence of a pure inflation factor in the US economy. In Section

6 we briefly discuss straightforward extensions of the proposed methodology to test for equality of a

subset of loadings, for time-invariant fixed effects as well as for interactive fixed effects. Finally, we

present our conclusions and suggestions for future work in Section 7. Proofs and auxiliary results are

gathered in the Appendix.

2 Model and assumptions

Consider a factor model for a panel of i = 1, ..., N series and t = 1, ..., T periods of the form

Yt = LFt + et (1)

or, in matrix form,

Y = FL′ + e,

where Y denotes a T ×N matrix of observed variables, F is a T × r matrix of r latent factors, L is an

N × r matrix of factor coeffi cients (or factor loadings) λij’s and e is an N × T vector of idiosyncratic

errors.

Since we focus on a situation in which N and T are both large, our asymptotic results require that

N,T →∞ jointly or, equivalently, that N = N(T ) with limT→∞N(T ) =∞. Although no restrictions

on the relative rates of N and T are required a priori.

Throughout this paper, the number of factors r is assumed to be fixed and known as N and T

grow. We are interested in testing hypotheses involving restrictions on an entire N × 1 vector of

loadings, an entire T × 1 vector of factors, or both. One of the first problems to tackle is to find a
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mathematically effi cient way to express the limit of a vector whose size grows to infinity. For instance,

if the null hypothesis is

H0 : λ1i = λ̄ for all i = 1, ..., N, (2)

the dimension of the parameter space diverges to infinity with N. An intuitive way to think about it

is to associate a probability measure to the vector (λ11, ..., λ1N )′, in this case a degenerate one at λ̄.

Associating a measure to a vector in the way we described is meaningful mostly when one wants to

have information about the whole set of values taken by the coordinates of the vector, and not about

each coordinate.2

We now give a couple of examples in which our proposed testing procedure may be useful.

Example 1. Reis and Watson (2010) model quarterly changes in sectoral price indices yit in terms of

three unobserved factors. They are interested in testing whether a “pure inflation”factor exists or not.

A pure inflation factor is a shock that shifts all prices up or down by the same fraction, thus leaving

relative prices unchanged. The null hypothesis in this case is (2) against the more general alternative

H1 : λ1i = λ̄+ ηi.

The null hypothesis in this case, therefore, imposes N restrictions by requiring all the factor loading

associated to the first factor f1t (the pure inflation factor) to be constant.

Example 2. In a panel data context it is customary to control for common time effects or trends ft and

individual fixed effects λi by including time and individual dummies in the estimation. This amounts

to modeling the unobserved heterogeneity in the model as λi + ft. If multiplicative (also known as

“interactive”) effects of the form λift are present, however, the within-group estimator is inconsistent

because it relies on additivity. An interactive effect arises when, for instance, the impact of a global

business cycle factor on the dependent variable is different from one country to another. Testing

whether a common trend specification is suitable or whether a more flexible, interactive, specification

has to be used is equivalent to a test of additive against interactive fixed effects as in Bai (2009), where

H0 : [λi, 1]

[
1
ft

]
= λi + ft

is tested against the alternative

H1 : [λ1i, λ2i]

[
f1t

f2t

]
= λ1if1t + λ2if2t.

2For an insightful discussion, see El Karoui (2008).
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In this case, the null hypothesis imposes T restrictions by forcing the first factor to be constant for all

t = 1, ..., T plus other N restrictions by forcing the second loading to be constant for each i, for a total

of N + T restrictions.

In order to keep the notation simple, from now on we focus on the setup and the null hypothesis

of Example 1, in which N restrictions on the matrix of factor loadings are tested.3 Consider then the

following representation for a model with r factors in which ft denotes the first factor with restricted

loadings λ1i = λ̄ for all i = 1, ..., N , and gt denotes the remaining r−1 factors with unrestricted factor

loadings γi,

yit = λ̄ft + γ′igt + eit,

or, in matrix form,

Y = FL′ + e = FΛ′ + GΓ′ + e (3)

where F = (F,G), L = (Λ,Γ), f = (f1, ..., fT )′,G = (g1, ..., gT )′, Λ = (λ1, ..., λN )′ and Γ = (γ1, ..., γN )′.

In this context, under the null the model imposes restrictions on the loadings of the first factor

ft; given that the scale of Λ and F is not identified we fix their relative scales by assuming that Λ is

equal to `N = (1, ..., 1)′.

We now briefly describe the assumptions of the model which are grouped into three blocks: as-

sumptions about the factors and factor loadings, assumptions about the errors, and assumptions about

the dependence among those groups.

Assumption A: Factors and Factor Loadings

Let Ft = (ft, g
′
t)
′ denote the vector of latent factors at time t and L = [Λ,Γ] be the N × r matrix of

factor loadings. We assume that:

(A1) For each t, Ft is a covariance stationary and ergodic process. Furthermore, E||Ft||8+ε ≤M ≤ ∞,

for some ε > 0 and

T−1
∑

t FtF
′
t
p→ ΣF, a positive definite, r × r matrix.

(A2) For each i, ‖Li‖ ≤ M ≤ ∞ and ||L′L/N − ΣL|| → 0 for some positive definite, r × r diagonal

matrix ΣL. Alternative, loadings can be random, provided that E||Li||8+ε ≤M.

(A3) The eigenvalues of the r × r matrix ΣLΣF are distinct.

These assumptions are in line with Bai (2003). Assumption A serves to identify the factors: The

nonsingular limiting values of ΣL and ΣF through A1 and A2 imply that each of the factors provides

3Notice that λ̄ is generally not identified, and therefore, the actual number of hypotheses is N −1; however, in a large
N , large T context, this discrepancy is negligible.
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a nonnegligible contribution to the average variance of yit, where yit is the i’th element of Yt and the

average is taken over both the times-series and the cross-sectional dimension. Notice that assumption

A1 allows for factors to be serially correlated, although we maintain the static representation in the

sense that lagged values of Ft do not enter into yit directly.4 Notice also that Assumption A1 rules out

stochastic trends, unit roots and other processes with non-constant unconditional second moments.

Finally, Assumptions A3 implies that the eigenvalues are assumed to be distinct.

Assumption B: Time and Cross-section Dependence of the Errors

There are two sequences of N ×N and T × T matrices Θ and Φ, respectively, such that disturbances

eit are generated as e = ΦεΘ, where ε is a T ×N matrix of iid elements such that:

(B1) E(εit) = 0, V (εit) = 1, E(ε4
it) = (3 + κε) and E(ε8+ε

it ) <∞.

Let eigj(A) denote the j’th largest eigenvalue of the square matrix A. Then:

(B2) eig1(ΘΘ′) < M and eig1(Φ′Φ) < M .

(B3) eigN (ΘΘ′) > 0 and eigT (Φ′Φ) > 0.

Assumption B allows for limited time series and cross-section dependence in the idiosyncratic

components as in the approximate factor model of Chamberlain and Rothschild (1983), Connor and

Korajczyk (1986) and Connor and Korajczyk (1993). Heteroskedasticity in both dimensions is also

allowed. Although normality is not assumed, Assumption B1 limits the size of fourth moments of

the idiosyncratic components. Φ is a matrix that captures time series correlation and Θ is a matrix

that induces cross-section correlation. As discussed in Harding (2013), this assumption restricts the

structure of dependence in that assumes separability of the covariance matrix i.e. V (vec(e)) = (Φ′Φ⊗

ΘΘ′). According to Assumption B, a generic single element eit can be written as

eit =
T∑
u=1

N∑
h=1

θihεhuφut, (4)

so that, if we assume Φ = IT errors are serially uncorrelated whereas if Θ = IN we have no cross-

sectional correlation in the disturbances. Although this structure is somewhat restrictive, it has

the nonparametric nature of the corresponding assumptions in Bai and Ng (2002) and Stock and

Watson (2002) since the entries of Θ and Φ are left unspecified apart from the requirement implied by

Assumptions B2 and B3. Assumption B2, by imposing restrictions on the size of the largest eigenvalues

of Φ′Φ and ΘΘ′, assures that the correlation is weak enough for a central limit theorem to hold. In

4Allowing for lagged values of the factors to enter the equation for Xit can be easily done through a minor change
of notation. Consider for instance a standard dynamic factor model in which Xit = λqi (L)ft + eit where λ

q
i (L) is a lag

polynomial of order q in nonnegative power of the lag operator L. Then, this model is equivalent to the static factor
model (3) with Ft = (ft, ft−1, ..., ft−q)

′. Notice, however, that our setup excludes the generalized dynamic factor model
considered by Forni, Hallin, Lippi, and Reichlin (2005) where the polynomial distributed lag possibly tends to infinity.
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turn, Assumption B3 requires V (vec(e)) to be a positive definite matrix.5

Structures with dependence in only one dimension are easily accommodated under this parame-

trization. For instance, Pesaran and Yamagata (2012) and Choi (2012) study factor models with

cross-section correlation and no time series dependence i.e. with Φ = IT , a common assumption in the

asset pricing literature. A particular case of our setup is the strict factor model structure introduced

in the APT theory of Ross (1976) which assumes eit to be uncorrelated across both dimensions, by,

in addition, restricting Θ to be diagonal. In contrast, setting Θ = IN and leaving Φ unrestricted

allows for serial correlation in the disturbance while imposing cross-sectional independence, a setup

considered for instance by Breitung and Tenhofen (2011). More generally, when dealing with macro-

economic series variables are typically serially correlated and often present cross-sectional correlation

even after the aggregate factors are controlled for (for instance, because of shocks to sectoral prices or

to alternative measures of the money supply).

Assumption C: Independence

(C) {Ft}Tt=1, {eit}
N,T
i,t=1 and {Li}Ni=1 are three mutually independent groups, although dependence within

groups is allowed.

Under Assumption C, Ft, eit and Li are mutually independent across i and t. This assumption

is stronger than the one used in e.g. Stock and Watson (2002) and Bai (2003) which permit eit and

Ft to be weakly correlated, but analogous to the ones considered by Bai and Ng (2004) and Harding

(2013).

In this context, a natural estimator of the factors and factor loadings F̃ and L̃ in the unrestricted

model is given by the first r principal components on the matrix Y Y ′/NT . As shown by Chamberlain

and Rothschild (1983), the principal components estimator converges to the maximum likelihood

estimator when N increases (though they did not consider sampling variation). Yet the former is

usually preferred because it is easier to compute and the asymptotic distribution of the principal-

component analysis based (PCA henceforth) estimated factors and factor loadings is well known since

Bai (2003).

As for estimation of the restricted model, define the cross-sectional mean at time t as yt =

N−1
∑N

i=1 yit. While the cross-sectional mean of the loadings and the time series mean of the factors

are not separately identified, the common component cit is. Hence, we could obtain an estimator of

5A milder version of Assumption B3 is eigN (ΘΘ′) ≥ 0 and eigT (Φ′Φ) ≥ 0 with N−1∑N
i=1 eigi(Θ

′Θ) → µΘ > 0 and
T−1∑T

t=1 eigt(Φ
′Φ)→ µΦ > 0. In that case, the fact that the means of the empirical spectral density of both matrices

converge to a positive constant together with Assumption B2, ensures the asymptotic negligibility of any fixed-N,T array
of errors.
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the common component for the restricted model by: i) removing cross-sectional means from the data:

yit − yt = (γi − γ)′gt + (eit − et),

where et = yt − ft − γ′gt and, ii) performing PCA on the demeaned data and extract the remaining

r − 1 principal components. Notice that the second step yields an estimator of (γi − γ)′gt and not of

γ′igt.
6 Hence, the estimator of the common component is then given by ĉit = yt + (γ̂i − γ)′ĝt, and the

estimation error is obtained as

ĉit − cit = yt + (γ̂i − γ)′ĝt − (ft + γ′igt)

= et + (γ̂i − γ)′ĝt − (γi − γ)′gt.

Having described the estimation procedure used for both the unrestricted and restricted models,

we proceed to describe our test statistic, which is based on the sums of square residuals, and derive

its large sample properties in the following Section.

3 Asymptotic results

From the unrestricted and restricted estimates we can compute the average sum of squared resid-

uals

σ̃2
NT =

1

NT

N∑
i=1

T∑
t=1

ẽ2
it and σ̂2

NT =
1

NT

N∑
i=1

T∑
t=1

ê2
it

where ẽit = yit − c̃it and êit = yit − ĉit to form

QNT = NT

(
σ̂2
NT − σ̃2

NT

σ̂2
NT

)
. (5)

The choice of the statistic QNT in (5) is motivated by the analogy with the F -test in the classical

linear model (e.g. Evans and Savin (1982)). Recall that the F -test statistic for a sample of N iid

observations is defined as a properly rescaled difference of restricted and unrestricted residual sum of

squares,
RRSS − URSS

URSS

N

ν
,

where ν is the number of linear restrictions to test. When the sample size goes to infinity, F is asymp-

totically distributed as a χ2 with ν degrees of freedom if the number of hypotheses stays fixed. When

the number of restrictions grows with sample size, Anatolyev (2012) shows that classical tests, after

6For simplicity, we can assume that the cross-sectional means of loadings associated to all factors but ft are zero.
This normalization is innocuous for our purposes as it leaves the common component unchanged and it is irrelevant for
our testing problem.
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appropriate recentering and rescaling, still have a limiting distribution that, under some additional

conditions, is a standard normal. In the same spirit, our goal is to derive asymptotic results for a

recentered and rescaled version of the QNT statistic.

While the denominator of QNT in (5), σ̂2
NT , will converge in probability to some average of the

squared residuals, say

σ2
∞ = p lim

N,T→∞

1

NT

N∑
i=1

T∑
t=1

e2
it = lim

N,T→∞

1

NT
tr(Φ′Φ)tr(ΘΘ′)

the numerator can be decomposed in three terms as follows

NT
(
σ̂2
NT − σ̃2

NT

)
=

N∑
i=1

T∑
t=1

(
ê2
it − ẽ2

it

)
= ANT + BNT − CNT

where

ANT = 2
N∑
i=1

T∑
t=1

eit (c̃it − ĉit) , (6)

BNT =
N∑
i=1

T∑
t=1

(c̃it − ĉit)2 , (7)

and

CNT = 2
N∑
i=1

T∑
t=1

(c̃it − ĉit) (c̃it − cit) . (8)

Before moving to asymptotic results, we state a useful intermediate result proven in the Appendix:

Lemma 1. (a) Suppose H0 : λi = λ̄ for all i = 1, ..., N . Then, under assumptions A, B and C we

have that

c̃it − ĉit =
1

T
F ′tPT

T∑
s=1

Fseis + rit where rit = Op

(
1

δ2
NT

)
where δNT = min(

√
N,
√
T ) and

PT =

(
F′F

T

)−1

−
(

0 0′

0 (G′G/T )−1

)
.

(b) Moreover, if
√
T/N → 0 and

√
N/T → 0, then

i)
1√
N

N∑
i=1

T∑
t=1

eitrit = op(1) and ii)
1√
N

N∑
i=1

T∑
t=1

(c̃it − cit) rit = op(1).

This simple asymptotic representation of the difference of the unrestricted and restricted estimated

common components is the building block of the asymptotic derivations detailed in the Appendix.

Intuitively, the contribution of the r− 1 factors with unrestricted loadings to the common component

cancels out. As for the part of the common component appearing inH0, we show that f̃t−f̂t = Op(δ
−2
NT )

while λ̃i − λ̂i = λ̃i − λi contains the term T−1F ′tPT
∑T

s=1 Fseis, which contributes to the asymptotic
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distribution of the test statistic plus a Op(δ−2
NT ) remainder. Part (b) of Lemma 1 ensures that terms

involving the remainder rit can be omitted when deriving the asymptotic distribution of the rescaled

and recentered QNT statistic. In particular, (b.i) ensures that terms that involve rit and arise in the

expression for ANT are negligible, whereas (b.ii) guarantees the same happens in term CNT . For BNT ,

instead, no additional results are needed.

To facilitate the exposition, we begin in Section 3.1 by assuming that the disturbances eit are iid.

This assumption is unrealistic though, but it allows us to draw analogies with the classical, fixed ν

case that helps us to build intuition. Then, we relax this assumption and allow for some degree of

cross-sectional dependence in Section 3.2. Finally, we consider the case with both times-series and

cross-sectional dependence in Section 3.3.

3.1 The iid case

Finding the asymptotic distribution amounts to verify that the conditions for a central limit

theorem for QNT are met. The proof relies on assuring those conditions hold for parts ANT , BNT and

CNT , and on obtaining expressions for the asymptotic mean and variance.

Theorem 1. (iid errors) Suppose assumptions A, B and C with Θ = IN and Φ = IT hold. If, in

addition N/T 2 → 0 and T/N2 → 0, then

Q1
NT =

QNT −N√
2N

d→ N(0, 1). (9)

The classic linear regression model results suggest that a test statistic like QNT should be asymp-

totically χ2 distributed with degrees of freedoms equal to the number of restrictions. Since our null

involves N hypotheses the χ2
N diverges as N →∞, convergence to a standard normal can be obtained

after the corresponding standardization. The result in Theorem 1, hence, extends the classical result

for testing in the linear regression model to the case of a factor model with large N and T . Remarkably,

the asymptotic distribution of the QNT statistic does not depend on the factors or other unobserved

quantities, so practical implementation is straightforward, and only requires to estimate the restricted

and unrestricted versions of the model and compute the corresponding sums of squared residuals.

Although we investigate the finite sample properties of the different versions of the tests in detail

in Section 4, it is convenient to exploit the simplicity of the expressions in the iid case to study

its asymptotic power properties. As is well known, the one-sided nature of the test implies that

(Q1
NT )2 will be asymptotically distributed as a 50:50 mixture of 0 and a χ2 with one degree of freedom

11



under the null, and as a non-central χ2 with one degree of freedom and non-centrality parameter

1

N
√
T

N∑
i=1

T∑
t=1

δ2
i f

2
t (10)

under the Pitman sequence of local alternatives Hl : λ = λ̄ + δ/
√
NT (see Newey and McFadden

(1994)). In this respect, it should be noted that term BNT —which captures the square of the discrep-

ancy between c̃it and ĉit—is the only one that delivers power to the test. In contrast, Q1
NT will diverge

to infinity for fixed alternatives of the form Hf : λ = δ, which makes it a consistent test.

We can assess the power implications of different combinations of sample sizes by computing the

probability of rejecting the null hypothesis when it is false as a function of δi under the assumption

that the asymptotic non-central chi-square distribution with one degree of freedom of the square of

the test statistic Q1
NT provides reliable rejection probabilities in finite samples. The results at the

usual 5% level are plotted in Figure 1 under the fairly innocuous assumptions that δi = δ > 0 for 20%

of the loadings and δi = 0 for the rest. Not surprisingly, the power of all configurations increases as

we depart from the null. More importantly, and in line with (10), the power of the test increases more

with the times-series dimension rather than the cross-sectional dimension.

Figure 1: Power of the Q1
NT test
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Notes: Results at the 5% level. The non-centrality parameter corresponds to the alternative hypothesis
λi = λ̄+ δi with δi = δ > 0 for 20% of the loadings and δi = 0 for the rest.
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3.2 The cross-sectional correlation case

A factor model with independent idiosyncratic errors as the one considered in the previous sub-

section is a “strict factor model”, and use of these models is not new. The new generation of large-

dimensional “approximate” factor models differs from the classical ones in at least two important

ways: (i) the idiosyncratic errors can be weakly serially and cross-sectionally correlated, and (ii) the

number of observations is large in both the cross-section and the time dimensions.

Allowing the errors to be cross-sectionally correlated makes the framework suitable for a wider

range of economic applications, but especially in financial applications, where the weak form of the

effi cient markets hypothesis implies absence of first order times-series correlation in the sense that for

financial assets “past performance is not an indicator of future performance”. In this respect, the

following result states asymptotic normality in the case of errors with cross-sectional dependence:

Theorem 2. (Weak cross-sectional correlation) Suppose assumptions A, B and C with Φ = IT hold.

If, in addition N/T 2 → 0 and T/N2 → 0, then

Q2
NT =

QNT −N√
2N2 × tr[(ΘΘ′)2]/[tr(ΘΘ′)]2

d→ N(0, 1). (11)

Comparing (11) with the corresponding one in Theorem 1, (9), we note that the presence of cross-

sectional correlation in the error terms inflates the variance of QNT but leaves the mean unchanged.

Even though the error structure allows for a largely unrestricted N × N matrix of cross-sectional

covariances ΘΘ′, in practice what matters are only the traces of (ΘΘ′)2 and ΘΘ′. This scalar correction

can be seen as a measure of average squared correlation of the error terms (see Pesaran and Yamagata

(2012)) and is, by assumption, bounded in N . Similarly to the iid case in Theorem 1, factors do not

enter the asymptotic distribution of QNT so that the only quantities that need to be estimated in

order to compute the test statistic are tr(ΘΘ′)2 and tr(ΘΘ′). Of course, if we were in the iid case

with V (eit) = σ2
e, the numerator of the correction term tr[(ΘΘ′)2]/[tr(ΘΘ′)]2 would be σ4

eN , while

the square of the trace in the denominator would be σ4
eN

2; hence, reducing it to N−1.

There is an interesting analogy between the Q2
NT statistic and the literature on pooling individual

test statistics. In fact, the expression (11) could be interpreted as a particular way of pooling individual

test statistics performed for each i. Typically, in those situations, one would calculate individual test

statistics for each i and then pool (or average) over the cross-section dimension to obtain

QpoolNT =
N∑
i=1

σ̂2
i − σ̃2

i

σ̃2
i

,
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where, for instance, σ̂2
i = T−1

∑T
t=1 ê

2
it. Pooling individual statistics or their p-values is especially

frequent in the panel unit root literature (see e.g. Im, Pesaran, and Shin (2003), Bai and Ng (2004)

and Maddala and Wu (1999)). For instance, if we let pi denote the individual p-value associated to a

unit-root test for unit i, then the p-value test proposed by Maddala and Wu can be written as

P = −2
N∑
i=1

ln pi,

which is a χ2 with N degrees of freedom distributed for fixed N as Ti → ∞. When N → ∞, Choi

(2001) proposes to use the following standardized version instead

Pm =
1

2
√
N

N∑
i=1

(−2 ln pi − 2) ,

which, by the Lindeberg-Lévy CLT converges in distribution to a standard normal as Ti →∞ followed

by N →∞, in a sequential manner.

The pooling we implicitly use when constructing Q2
NT is different from the ones described above

because it is done over i and t at the same time (and not over t and then over i) and, in addition, it

does not assume independence over i. In the case in which N and T are comparable, Pesaran (2007)

proposes to augment the standard Dickey-Fuller regressions with the cross-sectional averages of lagged

levels and first-differences of the individual series. Like us and differently from the previous literature,

he considers joint limit results for N,T → ∞ for N/T → c, but the proposed pooling statistic is not

asymptotically normal and critical values have to be tabulated. In the same spirit, our test statistic in

Theorem 2 also accounts for cross-sectional correlation other than that induced by common factors, in

the spirit of the approximate factor model theory developed by Bai and Ng (2002), Stock and Watson

(2002) and Bai (2003), among others, while retaining, interestingly, asymptotic normality.

3.3 The cross-section and time-series correlation case

Macroeconomic series typically show both serial and cross-sectional correlation, even after con-

trolling for common factors. In our context, allowing for the two types of correlation amounts to

leave the matrices Φ and Θ unrestricted apart from fulfilling the requirements in Assumption B. The

asymptotic distribution of the corresponding test statistic is given in the following result:

Theorem 3. (Weak cross-sectional and serial correlation) Suppose assumptions A, B and C hold.

If, in addition N/T 2 → 0 and T/N2 → 0, then

Q3
NT =

QNT − µQ3√
σ2
Q3

d→ N(0, 1),
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where

µQ3 = N × E [tr (PTF′Φ′ΦF)]

tr(Φ′Φ)

and

σ2
Q3 = 2N ×

N × tr
[
(ΘΘ′)2

]
tr [(ΘΘ′)]2

× E[tr (PTF′Φ′ΦF)2]

[tr(Φ′Φ)]2
,

where PT is defined in Lemma 1.

Theorem 3 can be applied to testing problems previously encountered in the literature. For in-

stance, Reis and Watson (2010)’s hypothesis on the presence of a pure inflation factor in US sectoral

price indices can be rigorously tested jointly by estimating the restricted and unrestricted models and

using the residuals to compute Q3
NT as we show in Section 5. This procedure accounts for possible

correlation in the error terms induced, for example, by shocks that hit some sectors of the economy

at the same time but are not pervasive enough to be captured by a common factor.

In contrast to the results in the previous subsections, now both the asymptotic mean and variance

depend on the factors, as well as on the matrices describing the dependence structure of the error

components. The orders of magnitude of µQ3 and σ2
Q3 are, however, still of order N because of the

assumption of weak correlation in both dimensions. In this context, the correction terms inflates both

the mean and variance, essentially capturing the average deviations from the identity of both the

cross-sectional and time-series variance matrices.

For what regards the mean µQ3 it is worth mentioning that, in the presence of times-series de-

pendence in the error terms (i.e. Φ 6= IT ), it remains equal to N when the factors are iid because

PTFF′ = e1e
′
1 where e1 = (1, 0, ...0)′ by the definition of PT . Secondly, if the first factor ft is uncor-

related with the remaining ones i.e. those entering in gt, then the relevant element of PT is simply

the reciprocal of f ′f so that PT only standardizes an average of the second order cross moments of the

first factor by its unconditional second moment. In the more general case of correlated factors, PT

has the role of performing a regression of the ft onto gt so that the orthogonal part is the only one

that contributes to µQ3 .

Analogous considerations apply to the variance term σ2
Q3 , which can be decomposed into three

terms:

i) 2N , which coincides with the variance in the iid case,

ii) N × tr
[
(ΘΘ′)2

]
/tr [(ΘΘ′)]2, that captures the variance inflation due to cross-sectional depen-

dence in the errors, and
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iii) E
[
tr(PTF′Φ′ΦF)2

]
/ [tr(Φ′Φ)]2, which performs the same type of correction but with respect

to the times-series dependence in the idiosyncratic components.

Q3
NT resembles a likelihood-ratio statistic in which part of the model (dependence in the error

terms) is not fully specified. As is well known, the usual asymptotic chi-squared distribution for the

likelihood-ratio test statistic is based on the assumptions that the data come from a correctly specified

parametric model and that the parameters satisfy the null hypothesis. In general, the likelihood-ratio

statistic no longer follows an asymptotic chi-squared distribution even when the null hypothesis is

true but the model is misspecified, as discussed in Kent (1982). However, in our context we find that

its recentered and rescaled version has an asymptotic standard normal distribution since the scaling

factor that affect each of the chi-squared terms can be estimated consistently on average.

4 Implementation and finite sample performance

4.1 Implementation details

Despite it is readily implementable, as no additional quantities are required for computing the test

statistic, Theorem 1, relies on the unrealistic assumption of iid errors. In the more empirically plausible

situation in which there is cross sectional correlation among error terms, as in Theorem 2, second

moments that capture the cross sectional dependence of the idiosyncratic components are involved

in the additional quantity that has to be estimated. In addition, when both types of dependence

are present the additional diffi culty of disentangling the cross-sectional dependence from its times-

series counterpart arises. For instance, if we consider the element (t, s) of E(ee′/N), straightforward

calculations show that E(ee′/N)(t,s) = E
(
N−1

∑N
i=1 eiteis

)
= N−1tr(ΘΘ′)

∑T
u=1 φutφus so that the

times-series covariance matrix E(ee′/N) also depends on the elements of Θ that characterise the cross

sectional dimension.

Although the theoretical expressions of the previous Section involve elements of Θ and Φ which

translate into second moments of the idiosyncratic terms, it turns out that what matters is the av-

erage correlation in each dimension, which is what really characterizes the dependence in e. Con-

sidering again the times-series correlation matrix, on can easily note that its diagonal elements are

N−1tr(ΘΘ′)
∑T

u=1 φ
2
ut, and, since the sum of eigenvalues of ΦΦ′ is equal to

∑T
u=1

∑T
t=1 φ

2
ut, a con-

venient way of normalizing this covariance matrix consists in dividing each column and row by its

corresponding average variance, say by defining

e◦it =
eit√

N−1tr(ΘΘ′)×
∑T

u=1 φ
2
ut

,

16



in order to obtain a correlation matrix characterizing the times-series dependence by computing

E[e◦e◦′/N ](t,s) = E

(
1

N

N∑
i=1

e◦ite
◦
is

)
=

∑T
u=1 φutφus√∑T

u=1 φ
2
ut

√∑T
u=1 φ

2
us

= ρt,s,

which is the (t, s)’th element of the times-series correlation matrix Υ. Analogously, for the cross-

sectional correlation matrix we can again normalize each column and row accordingly, by defining

instead

e�it =
eit√

T−1tr(ΦΦ′)×
∑N

h=1 θ
2
ih

,

so to obtain a correlation matrix Ψ characterizing the cross-sectional dependence with typical element

(i, j) given by

E[e�′e�/T ](i,j) = E

(
1

T

T∑
t=1

e�ite
�
jt

)
=

∑N
h=1 θihθjh√∑N

h=1 θ
2
ih

√∑N
h=1 θ

2
jh

= %i,j .

It is then clear that

N ×
tr
[
(ΘΘ′)2

]
[tr(ΘΘ′)]2

=
tr(Ψ2)

N
and

E[tr (PTF′Φ′ΦF)2]

[tr(Φ′Φ)]2
=
E
[
tr(PTF′ΥF)2

]
T 2

,

where we have used the fact that tr(Ψ) = N and tr(Υ) = T since, by construction, they are correlation

matrices. Notice that in the iid case, tr(Ψ2)/N = E
[
tr(PTF′ΥF)2

]
/T 2 = 1. From now on, we can

therefore focus on estimating the quantities tr(Ψ2) and E
[
tr(PTF′ΥF)2

]
.

A natural way to estimate tr(Ψ2) would be to construct the sample correlation matrix using

the estimated residuals and calculate the corresponding trace. Harding (2013) shows that the large

N,T limit of those traces, however, differs from the quantities we are interested in.7 Specifically,

using Harding’s results and the estimated residuals from the restricted model, êit = yit − ĉit, we can

construct a feasible estimator of tr(Ψ2) as

1

N
t̂r(Ψ2) =

1

N
tr[(Ψ̂)2]− N

T
where Ψ̂ = D̂−1/2Θ̂Θ′D̂−1/2

with Θ̂Θ′ = ê′ê/T and D̂ = diag(Θ̂Θ′). With this estimator at hand, we have all the required elements

to construct the Q2
NT statistic.

Unfortunately, forQ3
NT we cannot use Harding (2013)’s results for the estimation of E

[
tr(PTF′ΥF)2

]
which, in addition to estimation of Υ, requires estimates for PT and F. For the last two objects, it

7Harding (2013) shows that the moments of the eigenvalue distribution of a covariance matrix of data in which
both dimensions N and T are large can be derived analytically from the model assumptions (analogous to ours) using
properties of noncommutative random variables. He also provides a recursive expression for the computation of the
spectral moments of Θ.
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is natural to use their sample counterparts from the restricted model. Estimating that trace is more

challenging since: (i) it involves an expectation with respect to the factor distribution; and (ii) es-

timation errors in the matrix Υ could get amplified when computing the quadratic form PTF′ΥF.

As for (i), there is no alternative other than using the estimated factor from the actual sample of

size T . As regards to (ii), it is well known that the sample correlation matrix has a number of un-

desirable properties when the dimensions of the matrix are large. Although there have been recent

developments on estimation of large covariance matrices based on shrinkage methods, random matrix

theory or adaptive thresholding techniques among others (see e.g. Bai and Shi (2011) for a recent

survey), in this section and the next one we follow a parametric approximation in which we capture

the times series dependence in the idiosyncratic components through an homogeneous MA(q) process

with q = 5.

Specifically, we estimate Υ = Υ(υ) with υ = (υ1, ..., υ5)′ by minimizing the distance between the

sample times-series correlation matrix and

Υ(υ) =



1 υ1 · · · υ5 0 · · · 0

υ1 1
. . . . . .

...
...

. . . . . . . . . 0
υ5 υ5

0
. . . . . . . . .

...
...

. . . . . . . . . 1 υ1

0 · · · 0 υ5 · · · υ1 1


.

We have also tried the following alternative approaches: 1) using the adaptive thresholding technique

for sparse covariance matrices proposed by Fan, Liao, and Mincheva (2011); and 2) the “reduced”

correlation matrix discussed in Bai (2010). Through Monte Carlo simulations, our parametric ap-

proximation outperforms the others when the object of interest is PTF′ΥF, even when the true DGP

presents heterogeneous autocorrelation patterns (e.g. AR(1) processes for half of the sample and

MA(1) processes for the remaining part). Naturally, one could also use other estimators for Υ which,

depending on the application, may be more suitable.

4.2 Monte Carlo design

In this section we assess the finite sample size and power properties of the Q1
NT , Q

2
NT and Q

3
NT

test statistics under both the null hypothesis H0 : λ1i = 1 for all i = 1, ..., N, and under the alternative

of λ1,i = 1 + ui, ui ∼ iidN(0, .05), respectively. The loadings γ1j , ..., γr−1j for j = 1, ..., N of the

remaining factors are N(0, 1) variates.
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In Figure 2, we carry out 10,000 replications with sample sizes T = 190 and N = 187, as in our

empirical application. We collect in tables results for other sample size configurations to assess the

general properties of the proposed tests; specifically, we try different combinations of N and T , again

based on 10,000 replications. In all cases, the model is generated as a three-factor model under the

null of constant loading on the first factor. Results with a different number of factors are similar and

hence are not reported.

The framework used in the preceding section was quite rich, allowing for distributed lags of poten-

tially serially correlated factors and error terms that were conditionally heteroscedastic and serially and

cross-correlated. The design we use here seeks to incorporate all these features, and the idiosyncratic

components are generated accordingly as follows

(1− aL)eit = (1 + b2)vit + bvi+1,t + bvi−1,t,

with vit ∼ iidN(0, 1), delivering the iid case when a = b = 0 as a particular case. In order to introduce

some cross-sectional correlation but no times-series dependence in the error terms, we simulate the

errors as spatial MA(1) with coeffi cient b = 0.5 and a = 0. Finally, we allow for both times-series

and cross-sectional correlation by generating disturbances cross-sectionally correlated with SMA(1)

coeffi cient b = 0.5 and serially correlated with AR(1) coeffi cient a = 0.5.

As for the factors, we consider three different DGPs: DGP1 corresponds to the standard situation

in which factors are normally distributed independent of each other and across time. In DGP2

and DGP3 we introduce cross-sectional and/or times-series dependence in the factor structure by

generating Ft according to Ft = 0.5Ft−1 + ut where V (ut) = I3(1 − ρc) + ρc`3`
′
3 where Ir denotes

the identity matrix of size r while `r is a vector of r ones. In DGP2 we still keep factors independent

of each other i.e. ρc = 0 but we allow them to be serially correlated. Finally, in DGP3 factors are

not only serially correlated with autocorrelation 0.5 but also correlated with each other through the

innovations ut. The covariance matrix V (ut) is calibrated such that V (Ft) = 0.75I3 + 0.25`3`
′
3.

As regards estimation we use PCA for the unrestricted model and the procedure described in

Section 2 for the restricted model. To adjust for small sample bias, which may be substantial given

the number of hypotheses, we rescale the QNT statistic (see Evans and Savin (1982)) by the factor

NT − r(N + T ) + ν/2

NT

where ν is the number of hypotheses (ν = N in Example 1). Finally, computation details of the test

statistics in Theorems 2 and 3 are provided in Section 4.1.

19



4.3 Size and power properties

The first question that we need to address is whether the asymptotic distribution under the null

attributed to the test statistics introduced in Section 3 is reliable in finite samples. To do so, we use the

p-value discrepancy plots proposed by Davidson and MacKinnon (1998). Let wj denote the simulated

value of a given test statistic, and let pj be the asymptotic p-value of wj , that is the probability of

observing a value of the test statistic at least as large as wj according to its asymptotic distribution

under the null. Let also F̂ (x) for x ∈ (0, 1) be the empirical distribution function of pj i.e. the sample

proportion of p′js which are not greater than x. A p-value discrepancy plot is a plot of F̂ (x)−x against

x, i.e. a plot of the difference between actual and nominal size for a range of nominal sizes. If the

candidate distribution for wj is correct, then the p-value discrepancy should be close to zero.

Figure 2: p-value discrepancy plots of the Q1
NT , Q

2
NT , and Q

3
NT tests
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Panel A: iid error com ponents
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Panel B: Cross­sectional dependence
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Panel C: Cross­sectional and tim es­series dependence
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Notes: Results based on 10,000 replications on a factor model with three factors with Ft = 0.5Ft−1 + ut,
with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3 where Ir denotes the identity matrix of size r while `r is a vector of

r ones. The model is simulated under the null hypothesis H0 : λ1i = 1 for all i = 1, ..., N and the remaining
loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1) variates. In Panel A, error terms are iid in both dimensions,
whereas in Panel B they are cross-sectionally correlated with SMA(1) coeffi cient 0.33 for the first N/2 series
and 0.66 for the rest, and in Panel C errors are also serially correlated with AR(1) coeffi cient 0.33 and 0.66
for the first and second half of time periods, respectively. A description of estimation procedures as well as
computation details of the test statistics are provided in Sections 2 and 4.1, respectively.
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The top panel of Figure 2 shows p-value discrepancy plots of the three tests ofH0 : λ1i = λ̄ for all i =

1, ..., N, in samples in which the idiosyncratic components are iid while factors are generated according

to DGP3. The most striking fact that we find is that the test statistics Q2
NT and Q

3
NT , which involve

additional calculations that account for potential cross-sectional and/or times-series dependence, have

good size properties that are comparable to Q1
NT . In the middle panel, error terms are cross-sectionally

correlated with SMA(1) parameter of 0.5. Not surprisingly, Q1
NT becomes oversized as the variance

of QNT becomes inflated due to the dependence structure in the idiosyncratic terms. As for Q2
NT

and Q3
NT , they remain slightly oversized but with overall very satisfactory properties. Finally, in the

presense of both cross-sectional and times-series dependence, only Q3
NT provides reliable size properties

as can be seen in the bottom panel of Figure 2.

Table 1: Rejection rates under the null at 1%, 5%, and 10% significance levels: iid errors

1% 5% 10%
N T Q1

NT Q2
NT Q3

NT Q1
NT Q2

NT Q3
NT Q1

NT Q2
NT Q3

NT

Panel A: DGP1, Ft ∼ iidN(0, I3)

100 100 1.3 1.1 0.7 5.3 4.9 3.3 10.0 9.4 6.5
400 100 1.8 1.4 0.4 7.0 6.0 2.5 13.2 11.6 5.3
100 400 1.1 1.1 0.9 4.5 4.2 3.8 8.3 8.0 7.5
400 400 1.3 1.3 1.1 5.3 5.1 4.2 9.8 9.7 8.1
Panel B: DGP2, Ft = 0.5Ft−1 + ut, uit ⊥ ujs, i 6= j for all t, s s.t. V (Ft) = I3

100 100 1.3 1.2 1.3 5.3 4.9 4.9 9.8 9.3 9.3
400 100 1.8 1.3 1.3 6.3 5.3 5.2 12.3 10.8 10.7
100 400 1.4 1.3 1.3 4.6 4.4 4.5 8.6 8.3 8.3
400 400 1.3 1.2 1.2 5.8 5.7 5.8 10.4 10.3 10.6
Panel C: DGP3, Ft = 0.5Ft−1 + ut, with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3

100 100 1.5 1.3 1.4 5.2 4.8 4.9 9.7 9.2 9.2
400 100 1.7 1.3 1.5 6.5 5.5 5.6 12.2 10.9 10.6
100 400 1.1 1.0 1.1 4.7 4.4 4.5 8.7 8.5 8.7
400 400 1.3 1.2 1.3 5.2 5.2 5.4 9.7 9.6 9.7

Panel D: DGP3 with V (eit) = r

100 100 2.1 1.9 1.1 7.0 6.4 4.3 12.4 11.7 8.3
400 100 1.9 1.4 0.5 6.7 5.6 2.4 12.2 10.7 5.1
100 400 1.7 1.6 1.4 6.3 6.1 5.5 10.9 10.6 9.9
400 400 1.2 1.1 0.8 6.0 5.9 4.7 10.6 10.5 9.1

Notes: Results based on 10,000 replications on factor models with three factors simulated under the null
hypothesis H0 : λ1i = 1 for all i = 1, ..., N and the remaining loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1)
variates. A description of estimation procedures as well as computation details of the test statistics are provided
in Sections 2 and 4.1, respectively.

We complement the p-value discrepancy plots of Figure 2 with a more detailed Monte Carlo

exercise in which we focus on the rejection rates under the null of the test statistics at the 1%, 5%

and 10% nominal level. Table 1, 2 and 3 present those figures for the cases in which errors are iid,
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cross-sectionally correlated and with both cross-sectional and times-series dependence, respectively.

For each Table, in Panel A we consider the simple situation of iid factors. In Panel B factors follow

uncorrelated AR(1) processes with autocorrelation parameter of 0.5, whereas in Panel C a V AR(1)

with the same autocorrelation structure and contemporaneous correlation of 0.25.

Not surprisingly, Q1
NT outperforms the others, especially in the case N = T = 100 i.e. when the

sample is relatively small. This is probably due to the fact that the mean and variance figures needed

to standardize Q1
NT are evaluated at their population values N and 2N , while Q2

NT uses an estimate

of the variance and Q3
NT is based on estimates of both. A second noteworthy feature is that Q

3
NT is

slightly undersized when errors are iid. Finally, we should note that the three tests are oversized when

N is larger than T irrespective of the DGP assumed for the factors, as can be seen from the second

rows in the four panels. Finally, in Panel D we reduce the signal-to-noise ratio of the specification in

Panel A to 50% and find the same qualitative results.

Table 2: Rejection rates under the null at 1%, 5%, and 10% significance levels: Cross-sectionally
correlated but serially uncorrelated errors

1% 5% 10%
N T Q1

NT Q2
NT Q3

NT Q1
NT Q2

NT Q3
NT Q1

NT Q2
NT Q3

NT

Panel A: DGP1, Ft ∼ iidN(0, I3)

100 100 5.5 1.8 1.2 12.0 6.2 4.7 17.5 11.1 8.5
400 100 5.9 1.8 0.9 13.3 6.5 3.6 19.5 11.8 6.9
100 400 4.7 1.7 1.6 10.6 5.6 5.2 15.3 9.8 9.3
400 400 4.9 1.3 1.2 11.4 5.9 5.1 16.7 10.6 9.3
Panel B: DGP2, Ft = 0.5Ft−1 + ut, uit ⊥ ujs, i 6= j for all t, s s.t. V (Ft) = I3

100 100 5.7 1.9 1.9 11.8 6.6 6.5 16.9 11.0 10.8
400 100 5.6 1.4 1.5 13.1 6.3 6.3 19.1 11.5 11.2
100 400 4.9 1.6 1.7 11.2 5.8 6.0 16.2 10.2 10.3
400 400 5.1 1.4 1.5 11.1 6.1 6.2 16.8 10.3 10.6
Panel C: DGP3, Ft = 0.5Ft−1 + ut, with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3

100 100 5.4 2.1 2.1 11.9 6.2 6.3 16.9 11.0 11.0
400 100 5.6 1.5 1.6 13.3 6.3 6.4 19.4 11.6 11.6
100 400 5.0 1.6 1.6 11.4 5.7 5.9 16.4 10.6 10.7
400 400 5.1 1.5 1.6 11.6 6.2 6.3 17.2 10.9 11.1

Panel B: DGP3, with eit = (1 + b2i )vit + bivi+1,t + bivi−1,t

100 100 5.0 1.8 2.0 11.2 6.2 6.3 16.7 10.6 10.8
400 100 5.4 1.6 1.8 13.0 6.2 6.3 19.5 11.9 11.9
100 400 4.9 1.7 1.8 10.6 6.2 6.2 15.9 10.3 10.3
400 400 4.4 1.3 1.4 10.9 5.6 5.9 16.6 10.5 10.7

Notes: Results based on 10,000 replications. The remaining loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1)
variates. The SMA(1) coeffi cient is 0.5 in Panels A, B, and C. In Panel D, error are cross-sectionally correlated
with SMA(1) coeffi cient 0.33 for the first N/2 series and 0.66 for the rest. A description of estimation procedures
as well as computation details of the test statistics are provided in Sections 2 and 4.1, respectively.
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Table 3: Rejection rates under the null at 1%, 5%, and 10% significance levels: Error terms with both
times-series and cross-sectional correlation

1% 5% 10%
N T Q1

NT Q2
NT Q3

NT Q1
NT Q2

NT Q3
NT Q1

NT Q2
NT Q3

NT

Panel A: DGP1, Ft ∼ iidN(0, I3)

100 100 10.1 2.8 1.0 17.4 8.2 3.9 23.1 13.6 8.2
400 100 16.8 2.8 0.1 25.3 7.9 1.1 30.9 13.5 3.7
100 400 6.8 2.3 1.3 13.2 7.0 5.1 18.4 11.4 9.2
400 400 8.6 2.0 0.7 16.0 6.8 3.5 22.0 11.7 7.3
Panel B: DGP2, Ft = 0.5Ft−1 + ut, uit ⊥ ujs, i 6= j for all t, s s.t. V (Ft) = I3

100 100 79.9 59.4 2.1 87.9 76.6 7.2 91.1 84.4 12.8
400 100 98.7 90.5 0.6 99.5 96.3 4.1 99.7 98.1 10.2
100 400 83.1 68.4 1.5 90.7 83.6 5.8 93.9 89.2 10.5
400 400 99.9 99.4 0.9 100.0 99.9 4.8 100.0 100.0 9.6
Panel C: DGP3, Ft = 0.5Ft−1 + ut, with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3

100 100 80.0 60.7 2.0 88.0 77.0 7.3 91.4 84.1 13.1
400 100 98.8 91.0 0.6 99.5 96.7 4.1 99.7 98.3 10.0
100 400 84.6 71.1 1.7 91.7 85.0 6.0 94.4 90.3 10.8
400 400 99.9 99.4 1.1 100.0 99.9 5.0 100.0 100.0 9.6

Panel D: DGP3, with (1− aiL)eit = (1 + b2i )vit + bivi+1,t + bivi−1,t

100 100 80.4 61.0 2.5 88.2 76.9 8.2 91.4 84.1 14.4
400 100 98.2 87.2 1.7 99.1 94.9 7.4 99.4 97.3 13.9
100 400 85.4 72.7 2.0 92.5 85.9 6.6 95.0 91.3 11.6
400 400 99.9 99.2 1.5 100.0 99.8 5.6 100.0 99.9 10.9

Notes: Results based on 10,000 replications. The remaining loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1)
variates. The SMA(1) and AR(1) coeffi cients are equal to 0.5 in Panels A, B, and C. In Panel D, errors are
cross-sectionally correlated with SMA(1) coeffi cient 0.33 for the first N/2 series and 0.66 for the rest, and also
serially correlated with AR(1) coeffi cient 0.33 and 0.66 for the first and second half of time periods, respectively.
A description of estimation procedures as well as computation details of the test statistics are provided in
Sections 2 and 4.1, respectively.

In Table 2 we report the corresponding figures for the case of cross-sectionally correlated errors.

In line with the middle panel of Figure 2 we see that Q1
NT has a large size distortion. Secondly,

although Q2
NT is based in the actual mean (N) and its estimator of the variance of QNT exploits the

time-series independence of the error terms, we find a similar pattern in terms of good size properties

for both Q2
NT and Q

3
NT , which suggest that the effects in terms of effi ciency losses of estimating those

additional quantities seem to be minor compared to the robustness gains from using the more general

version of Theorem 3.3. This result, which holds irrespective of the DGP assumed for the factors, is of

practical interest since in applications it is advisable the use of Q3
NT since it accounts for both types

of dependence. Finally, in Panel D we introduce some degree of heterogeneity in the cross-sectional

dependence of the errors by generating them as cross-sectionally correlated with SMA(1) coeffi cient

b1 = 0.33 for the first N/2 series, and b2 = 0.66 for the rest. As expected, since there are no parametric
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restrictions on Θ in Assumption B, we see that both Q2
NT and Q

3
NT have good size properties in that

situation.

Table 4: Monte Carlo rejection rates (%) of tests at 1%, 5%, and 10% significance levels under the
alternative H1 : λ1i = 1 + ηi, ηi ∼ N(0, 0.05)

1% 5% 10%
N T Q1

NT Q2
NT Q3

NT Q1
NT Q2

NT Q3
NT Q1

NT Q2
NT Q3

NT

Panel A: DGP3, with eit ∼ iidN(0, 1)

100 100 21.1 20.1 9.8 39.0 38.0 18.3 50.6 49.8 23.6
400 100 68.4 65.8 29.0 84.6 83.3 38.5 90.3 89.6 42.7
100 400 98.0 97.9 73.3 99.4 99.4 79.6 99.7 99.7 82.6
400 400 100.0 100.0 90.1 100.0 100.0 92.0 100.0 100.0 92.8

Panel B: DGP3, with (1− aiL)eit = (1 + b2i )vit + bivi+1,t + bivi−1,t

100 100 91.9 78.9 4.0 95.8 89.5 10.3 97.3 93.8 15.2
400 100 99.9 97.1 6.2 99.9 99.3 14.4 100.0 99.7 21.0
100 400 100.0 99.8 32.6 100.0 100.0 47.8 100.0 100.0 55.2
400 400 100.0 100.0 60.5 100.0 100.0 67.3 100.0 100.0 70.4

Notes: Results based on 10,000 replications. DGP3 corresponds to a factor model with three factors with
Ft = 0.5Ft−1 + ut, with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3 where Ir denotes the identity matrix of size r

while `r is a vector of r ones. The remaining loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1) variates. In
Panel A, error terms are iid in both dimensions, whereas in Panel they are cross-sectionally correlated with
SMA(1) coeffi cient 0.33 for the first N/2 series and 0.66 for the rest, and also serially correlated with AR(1)
coeffi cient 0.33 and 0.66 for the first and second half of time periods, respectively. A description of estimation
procedures as well as computation details of the test statistics are provided in Sections 2 and 4.1, respectively.

Rejection rates under the null at 1%, 5%, and 10% significance levels in the case of error terms

with both times-series and cross-sectional correlation are reported in Table 3. Not surprisingly, only

Q3
NT presents good size properties across all the configurations of the different panels. Interestingly,

in Panel A, where factors are iid, Q2
NT still performs reasonably well, although moderately oversized.

This feature can be attributed to the fact that, although the variance of QNT is underestimated

through Q2
NT in the presence of times-series dependence in the error terms, its mean remains equal to

N when the factors are iid (see Section 3.3).

In order to assess the power properties of the Q1
NT , Q

2
NT and Q

3
NT test statistics, we simulate and

estimate 10,000 samples under under the alternative of λ1i = 1+ui, ui ∼ iidN(0, .05). Table 4 reports

the corresponding Monte Carlo rejection rates of the tests at 1%, 5%, and 10% significance levels. In

Panel A, error terms are iid in both dimensions, whereas in Panel B they are cross-sectionally correlated

with SMA(1) coeffi cient 0.33 for the first N/2 series and 0.66 for the rest, and also serially correlated

with AR(1) coeffi cient 0.33 and 0.66 for the first and second half of time periods, respectively. In

Panel A, we observe that Q1
NT has more power than Q

2
NT which in turns is more powerful than Q

3
NT ,

which suggest that the use of the true recentering and rescaling quantities results in gains of power.
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Table 5: Size-adjusted Monte Carlo rejection rates (%) of tests at 1%, 5%, and 10% under the
alternative H1 : λ1i = 1 + ηi, ηi ∼ N(0, 0.05)

1% 5% 10%
N T Q1

NT Q2
NT Q3

NT Q1
NT Q2

NT Q3
NT Q1

NT Q2
NT Q3

NT

Panel A: DGP3, with eit ∼ iidN(0, 1)

100 100 17.3 17.3 8.3 37.0 37.3 17.9 50.1 50.3 23.7
400 100 60.6 62.1 27.2 81.2 81.9 37.5 87.9 88.4 41.9
100 400 97.7 97.7 72.7 99.4 99.4 79.8 99.8 99.8 83.0
400 400 100.0 100.0 89.8 100.0 100.0 91.8 100.0 100.0 92.8

Panel B: DGP3, with (1− aiL)eit = (1 + b2i )vit + bivi+1,t + bivi−1,t

100 100 3.4 3.3 1.9 12.3 12.0 6.6 21.8 21.2 11.7
400 100 4.6 4.2 4.8 16.9 16.2 11.6 27.8 26.8 17.9
100 400 41.1 41.3 24.1 68.6 68.7 42.8 82.0 81.9 52.4
400 400 93.6 93.7 59.1 98.7 98.7 66.8 99.5 99.5 69.5

Notes: Results based on 10,000 replications. DGP3 corresponds to a factor model with three factors with
Ft = 0.5Ft−1 + ut, with V (ut) s.t. V (Ft) = 0.75I3 + 0.25`3`

′
3 where Ir denotes the identity matrix of size r

while `r is a vector of r ones. The remaining loadings γij’s, j = 1, ..., N , i = 2, ..., r are N(0, 1) variates. In
Panel A, error terms are iid in both dimensions, whereas in Panel they are cross-sectionally correlated with
SMA(1) coeffi cient 0.33 for the first N/2 series and 0.66 for the rest, and also serially correlated with AR(1)
coeffi cient 0.33 and 0.66 for the first and second half of time periods, respectively. A description of estimation
procedures as well as computation details of the test statistics are provided in Sections 2 and 4.1, respectively.

Interestingly, this is true irrespective of the DGP assumed to generate the error terms.

In view of the substantial size distortions reported in Table 3 of Q1
NT and Q

2
NT under the null

when there is times-series dependence as in Panel B, we report not only raw rejection rates based on

asymptotic critical values as in Table 4 but also size-adjusted ones in Table 5, which exploit the Monte

Carlo critical values obtained in simulations under the null. If we focus on this second table, we can

conclude that all the tests have significant power and that the aforementioned ranking is preserved.

5 Is there a pure inflation factor in the US economy?

In studying the behavior of inflation, Reis and Watson (2010) decompose the quarterly changes

in sectoral goods’prices into a pure inflation component, an aggregate relative price index, and idio-

syncratic relative prices. In their factor model, the pure inflation component is modeled as a factor

that affects all sectors with the same intensity, whereas the relative price factors are allowed to have

different impacts on each sector. The pure inflation factor is then estimated by restricting the loadings

to be equal in all sectors.

To test these restrictions, they rely on t-tests obtained from univariate regressions of each price

series on the estimated pure inflation factor. The cross-sectional correlation that is likely to be present

in sectoral prices may be affecting the idiosyncratic components and, hence, the individual t-statistics.
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A more formal approach would be to test all hypotheses jointly, while allowing for correlation in the

error terms. To this aim, we begin by estimating a three-factor model under the null of constant

loadings on the first factor (λ1i = 1 for all i = 1, ..., N) and under the alternative, as described in

Section 2.

With estimates from both models in hand, we construct the QNT statistic under the assumptions

of iid disturbances, of cross-sectionally correlated disturbances and, finally, allowing for both types

of correlation. In the first panel of Table 6 we can see that the hypothesis that there exists one

factor with constant loadings is strongly rejected under all the three assumptions on the errors, with

values of Q1
NT , Q

2
NT and Q

3
NT well above the 95% critical value of 1.64. This result is in line with

the findings in Reis and Watson, in which the individual t-tests rejected the null of unit loading 30%

of the times at the 5% level. It should be noted that, since the estimated values for tr(Ψ2)/N and

E
[
tr(PTF′ΥF)2

]
/T 2 are, respectively, 2.82 and 1.30, there seems to be significant correlation in both

dimensions, suggesting that Q3
NT is the most appropriate choice.

Table 6: Testing for the existence of a pure inflation factor
Q1
NT Q2

NT Q3
NT

Null hypothesis (H0) Stat. p-value Stat. p-value Stat. p-value
Panel A: Testing for a pure inflation factor

λ1i = λ 49.7 0.00 31.5 0.00 26.5 0.00
λ1i ∈ {λ1, λ2, λ3} 43.3 0.00 31.8 0.00 27.0 0.00
λ1i ∈ {λ1, ..., λ13} 45.6 0.00 33.5 0.00 27.7 0.00

Panel B: Sorting loadings
λ1i ∈ {λ1, λ2, λ3} 11.6 0.00 8.8 0.00 3.8 0.00
λ1i ∈ {λ1, λ2, λ3, λ4} 3.8 0.00 2.9 0.00 −0.2 0.58
λ1i ∈ {λ1, λ2, λ3, λ4, λ5} 0.0 0.50 0.0 0.50 −2.2 0.98

Notes: Data are quarterly price changes in each of 187 sectors in the US personal consumption expenditures
category of the national income and product accounts from 1959:Q1 to 2006:Q2. Estimation of the restricted
model is described in Section 5. Computation details of the test statistics are provided in Section 4.1.

A second exercise we perform is to relax our null of constant loadings in all sectors allowing

heterogeneity between the three categories in which US sectoral prices are divided: durable goods,

non durable goods, and services. Estimation of the group-restricted model is performed by iteration

as follows: first, we initialize the estimate of the first factor by extracting one principal component

from the covariance matrix of the data. Then, we estimate the common loading in each of the three

groups by pooled OLS by regressing sectoral prices in each group on the factor. With those estimates

for the three loadings, we obtain a new estimate for the factor by regressing the sectoral prices on the

loadings. We use this new estimate to reinitialize the factor and iterate on the steps described above
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until the maximum difference between the common components estimated in two consecutive iterations

is smaller that 0.001. Once convergence is attained, we estimate the remaining two unrestricted factors

using the original data after removing the estimated contribution of the restricted factor.

We also estimate this grouped model at a more disaggregated level by allowing for heterogeneity

across thirteen subcategories.8 The second and third rows of the Panel A of Table 6 show that the

test statistic is very large in all cases, suggesting that the hypothesis that price factors affect sectors

in the same category or subcategory equally is rejected by the data.

Figure 3: Factor loading estimates. Model with 3 and 13 groups

Notes: Data are quarterly price changes in each of 187 sectors in the US personal consumption expenditures
category of the national income and product accounts from 1959:Q1 to 2006:Q2. Estimation of the restricted
model is described in Section 5.

Although the tests strongly reject the null hypothesis, it is informative to look at the estimated

loadings in each group. Figure 3 plots the estimated loadings for each of the three groups and for

each group’s subcategories. Loadings in each case are rescaled by dividing them by their cross-

sectional mean so to have a mean of one. Interestingly, we see that in the model with three groups

there does not seem to be substantial heterogeneity across durables, non durables and services. The

picture, however, masks substantial heterogeneity, which becomes apparent once we allow for more

disaggregation: within services goods, we see that, for example, the effect of the factor on recreation

and transportation sectors is much weaker than that on medical care and housing. For nondurables,
8The corresponding subcategories are: motor vehicles, furnitures, other durables, food, clothing, gasoline, other

nondurables, housing, household operation, transportation, medical care, recreation and other. For a detailed list of
sectors, categories and subcategories, see the Supplemental Appendix.
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we see that the loading of the gasoline and other fuels subcategory is much different than the clothing

or other nondurables one. The same pattern applies to durable goods subcategories.

As a final exercise, we let the data choose the groups. We begin by estimating a one-factor model

by PCA. The loadings are ordered from the smallest to the largest and the N = 187 series are divided

in three, four and five groups of equal size.9 Results are reported in the Panel B of Table 6. Although

the test rejects the structure with three groups, when we allow for four groups the Q3
NT statistic, which

accounts for both time series and cross-sectional correlation, is below the standard normal critical value

of 1.64, with a p-value of 0.58. Allowing for five groups is enough for neither of the three test statistics

to reject the null of grouped loadings.

These results suggest that there seem to be enough differences in the loadings to reject the existence

of a pure inflation factor, but these differences are not as strong as to imply strong heterogeneity: with

as little as four groups chosen by the data, the restricted model is not rejected as a valid representation

of the data.

6 Extensions

In the previous sections we have focused on the setup and the null hypothesis of Example 1,

in which N restrictions on the matrix of factor loadings are tested; here we provide a few additional

examples to illustrate how to conduct inference using the proposed methodology in similar but slightly

different situations.

A first example could be testing for equality of the factor loading coeffi cients for a group of the

N series, say n, leaving the remaining N − n factor loadings unrestricted, in a context in which n/N

converges to a constant. For instance, in our empirical application one could relax the null of constant

loadings in all sectors to test for a pure inflation factor within the services category only. In Panel

A of Table 7 we provide the corresponding expressions to Lemma 1 as well as mean and variances

for Theorems 1, 2 and 3 in the case in which n = N/2. Not surprisingly, the test statistic accounts

for differences in the restricted and unrestricted common components related to the N/2 series whose

loading enter the null hypothesis. Although in the current context we suggest the use of an iterative

estimation procedure, similar to the group-restricted model estimator described in Section 5 which

exploits the N series to estimate the factors, the intution for the quantities involved in the means

and variances can be easily understood as being the same as in Section 3, but arising from using the

9Clearly, when the number of series is not divisible by the number of groups, some of the groups will have one
additional unit.
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Table 7: Asymptotic distribution of the test statistic QNT under different null hypotheses

Unrestricted econometric model: Xit = λift + γigt + eit, for i = 1, ..., N, t = 1, ..., T

Panel A: H0 : λi = λ̄ for i = 1, ..., N/2

c̃it − ĉit =


1
T F
′
tPT

∑T
s=1 Fseis +Op

(
1

δ2
NT

)
for i = 1, ..., N/2

Op

(
1

δ2
NT

)
for i = N/2 + 1, ..., N

iid errors (Θ = IN ,Φ = IT )
E(QNT ) = N/2
V (QNT ) = N

Weak cross-sectional correlation (Φ = IT )
E(QNT ) = N/2
V (QNT ) = N2/2× tr[(Θ0Θ′0)2]/[tr(Θ0Θ′0)]2

Weak cross-sectional and serial correlation
E(QNT ) = N/2× E [tr (PTF′Φ′ΦF)] /tr(Φ′Φ)

V (QNT ) = N2/2× tr
[
(Θ0Θ′0)2

]
/tr [(Θ0Θ′0)]2 × E[tr (PTF′Φ′ΦF)2]/ [tr(Φ′Φ)]2

Panel B: H0 : gt = ḡ for all t = 1, ..., T

c̃it − ĉit = 1
N λ
′
iQN

∑N
j=1 λjejt +Op

(
1

δ2
NT

)
iid errors (Θ = IN ,Φ = IT )
E(QNT ) = T
V (QNT ) = 2T

Weak cross-sectional correlation (Φ = IT )
E(QNT ) = T × E[tr (QNL′ΘΘ′L)]/tr(ΘΘ′)

V (QNT ) = 2T × E[tr (QNL′ΘΘ′L)2]/[tr(ΘΘ′)]2

Weak cross-sectional and serial correlation
E(QNT ) = T × E[tr (QNL′ΘΘ′L)]/tr(ΘΘ′)

V (QNT ) = 2T 2 × tr[(Φ′Φ)2]/tr[(Φ′Φ)]2 × E[tr (QNL′ΘΘ′L)2]/ [tr(ΘΘ′)]2

Panel C: H0 : λi = λ̄ for all i = 1, ..., N and gt = ḡ for all t = 1, ..., T

c̃it − ĉit = 1
T F
′
tPT

∑T
s=1 Fseis + 1

N l
′
iQN

∑N
j=1 ljejt +Op

(
1

δ2
NT

)
iid errors (Θ = IN ,Φ = IT )
E(QNT ) = N + T
V (QNT ) = 2(N + T )

Weak cross-sectional correlation (Φ = IT )
E(QNT ) = N + T × E [tr (QNL′ΘΘ′L)] /tr(ΘΘ′)

V (QNT ) = 2N2 × tr[(ΘΘ′)2]/tr[(ΘΘ′)]2 + 2T × E[tr (QNL′ΘΘ′L)2]/ [tr(ΘΘ′)]2

Weak cross-sectional and serial correlation
E(QNT ) = N × E [tr (PTF′Φ′ΦF)] /tr(Φ′Φ) + T × E [tr (QNL′ΘΘ′L)] /tr(ΘΘ′)

V (QNT ) = 2N2 × tr[(ΘΘ′)2]/tr[(ΘΘ′)]2 × E[tr (PTF′Φ′ΦF)2]/ [tr(Φ′Φ)]2

+ 2T 2 × tr[(Φ′Φ)2]/tr[(Φ′Φ)]2 × E[tr (QNL′ΘΘ′L)2]/ [tr(ΘΘ′)]2

Notes: δNT = min(
√
N,
√
T ) L = [l′1, ..., l

′
N ]′ with li = (λi, γi)

′, F = [F ′1, ..., F
′
T ]′ with Ft = (ft, gt)

′, Θ0 is the
N ×N/2 matrix containing the first N/2 columns of Θ,

PT =

(
F′F

T

)−1
−
(

0 0

0 (G′G/T )
−1

)
and QN =

(
L′L

N

)−1
−
(

(Λ′Λ/N)
−1

0
0 0

)
where G = (g1, ...gT )′ and Λ = (λ1, ..., λN )′. A description of model assumptions is in Section 2.
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relevant N/2 series only. Indeed, since c̃it − ĉit = Op(δ
−2
NT ) for i = N/2 + 1, ..., N under H0 : λi = λ̄

for i = 1, ..., N/2, QNT is constructed using the restricted and unrestricted squared residuals of the

first N/2 series only, that is QNT = (N/2)T
(
σ̂2
NT − σ̃2

NT

)
/σ̂2

NT where σ̃
2
NT = 2(NT )−1

∑N/2
i=1

∑T
t=1 ẽ

2
it

and σ̂2
NT = 2(NT )−1

∑N/2
i=1

∑T
t=1 ê

2
it. As a consequence, the correction term for the variance in the

presence of cross-sectional correlation is the analogous to the one in Theorem 1 but excluding the

series whose residual estimates do not enter in QNT i.e. Θ0 only contains the first N/2 columns of Θ.

Typically in panel data it is assumed that the unobserved individual-specific heterogeneity is fixed

across time, but there are several reasons why this assumption may not hold. Another potentially

interesting case is, therefore, that of testing for constant individual effects. Panel B of Table 7 reports

the necessary quantities to apply our testing procedure in this context. Not surprisingly, the mean

and the variance in Theorems 2 and 3 now depend on the loadings.

Finally, in a panel data context in which both dimensions are large it is customary to control

for common time effects or trends ft and individual fixed effects λi by including time and individual

dummies in the estimation. This amounts to modeling the unobserved heterogeneity in the model

as λi + ft. If multiplicative (also “interactive”) effects of the form λift are present as in Bai (2009),

however, the within-group estimator is inconsistent because it relies on additivity. Our approach

provides an alternative to the Hausman type test introduced in that paper. The results we provide

in Panel C of Table 7 accommodate this situation by exploiting the orthogonality of eigenvectors, i.e.

asymptotic independence of the two set of hypotheses, to combine the results of Section 3 with those in

Panel B of Table 7: the number of hypotheses are N +T ; and, since one eigenvector of each dimension

is restricted under the null, the asymptotic distribution of Q3
NT now depends on both factors and

factor loadings.

7 Summary and directions for further research

In this paper we develop a hypothesis testing framework in which the number of restrictions

entering the null hypothesis grows with the sample size, possibly at a rate of N + T . We propose a

simple testing procedure based on the sums of squared residuals of, respectively, the restricted and the

unrestricted version of the approximate factor model and obtain the asymptotic distribution of the

test statistic under different assumptions on the error terms, allowing for both serial and cross-section

correlation.

In the iid case our procedure extends the classical results for testing in the linear model to the case

of a factor model with large N and T . By properly rescaling and recentering the test statistic, we show
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that our framework remains valid even when the dependence among disturbances is left unspecified.

Specifically, we derive the asymptotic properties of our test statistic under relatively flexible forms

of weak cross-sectional and times-series dependence that are potentially relevant in many empirical

situations. We show that the expressions for the limiting mean and variance can be easily corrected

to allow for both types of correlation and provide simple and intuitive estimators for those quantities.

We conduct Monte Carlo exercises to study the finite sample reliability and power of our proposed

tests. Our results show that the finite sample size of the different tests is reliable under correct

specification. They also imply that the most restrictive versions of the tests, either by assuming that

errors are iid or by neglecting times-series correlation, dominate in terms of power the more robust

test that accounts for both types of dependence.

Finally, we provide an application of the test by taking the data in Reis and Watson (2010) and

reconsidering their hypothesis of the existence of a pure inflation factor in the US price indices. The

null of the presence of one factor with constant loadings is strongly rejected under the three versions

of the test, which is in line with their finding that individual t-tests rejected the null of unit loading

30% of the times at the 5% level. Interestingly, when we let the data choose the groups, we find

that, although there seem to be enough differences in the loadings to reject the existence of a pure

inflation factor, these differences are not as strong as to imply substantial heterogeneity: with four

groups chosen by the data the restricted model is not rejected.

The testing procedures we have developed can be extended in several interesting directions. First,

in the context of macroeconomic forecasting, Breitung and Eickmeier (2011), Chen, Dolado, and Gon-

zalo (2014) and Han and Inoue (2013) have recently proposed testing procedures for structural breaks

in approximate factor models, a relevant feature since when macroeconomic forecasts are constructed

using a sample that spans a long period, some degree of temporal instability is inevitable and deter-

mining whether it is large enough in order to be considered a break is empirically relevant. In this

respect, our methodology could be adapted to models with structural breaks in the loadings, in which

case one has to endogenize the timing of the break. Moreover, it has the potential for disentangling

breaks in factor dynamics from breaks in factor loadings.

Finally, recent papers have proposed factor models that use common and block-specific factors to

capture the between- and within-block variations in the data, hence incorporating structure, taking

advantage of it in terms of effi ciency, and facilitating the interpretation of the results. For instance,

Kose, Otrok, and Whiteman (2003) investigate the dynamic properties of business-cycle fluctuations

across countries, regions, and the world. Stock and Watson (2009) study housing construction activity
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in the US through a factor model with a national factor, a regional factor, and a state-specific error;

more recently, Moench, Ng, and Potter (2013) propose multilevel factor models to characterize within

and between-block variations as well as idiosyncratic noise in large dynamic panels. Our approach

could also be extended to develop specification tests for the aforementioned models. All these topics

constitute interesting avenues for further research.
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Appendix

A Proofs

To prove the main results we make use of the following lemmata:

Lemma 2. Suppose Assumption A holds and let SF = (T−1F′F) and

MT =

[
1 0′

−(G′G)−1G′F 0

]
.

Then,

a)
T∑
t=1

PTFtF
′
t = TMT , Hence, tr

[
T∑
t=1

PTFtF
′
t

]
= T.

b)
T∑
t=1

S−1
F FtF

′
t = T × Ir. Hence, tr

[
T∑
t=1

S−1
F FtF

′
t

]
= rT.

c)
T∑
t′=1

(F ′tPTFs)
(
F ′t′PTFs′

) (
F ′t′PTFs′′

)
= T × tr

[(
PTFs′F

′
s′′
)

(PTFs′′′F
′
t)
]
.

d)
T∑
t=1

T∑
t′=1

(F ′tPTFs)
(
F ′t′PTFs′

) (
F ′t′S

−1
F Fs′′

)
= T × tr

[(
PTFs′F

′
s′′
)

(PTFs′′′F
′
t)
]
.

e)
T∑
t=1

T∑
t′=1

(F ′tPTFs) (F ′tPTFs′)
(
F ′t′PTFs′′

) (
F ′t′PTFs′′′

)
= T 2 × tr

[(
PTFs′F

′
s′′
)

(PTFs′′′F
′
s)
]
.

f)
T∑
t=1

T∑
t′=1

(F ′tPTFs)
(
F ′t′PTFs′

) (
F ′tS

−1
F Fs′′

) (
F ′t′S

−1
F Fs′′′

)
= T 2 × tr

[(
PTFs′F

′
s′′
)

(PTFs′′′F
′
s)
]
.

g)
T∑
t=1

T∑
t′=1

(F ′tPTFs) (F ′tPTFs′)
(
F ′t′PTFs′′

) (
F ′t′S

−1
F Fs′′′

)
= T 2 × tr

[(
PTFs′F

′
s′′
)

(PTFs′′′F
′
s)
]
.

Proof of Lemma 2

a) Write

T∑
t=1

PTFtF
′
t = TPTSF = T

[
S−1
F −

(
0 0′

0 (G′G/T )−1

)]
SF = T

[
Ir −

(
0 0′

(G′G)−1G′F Ir−1

)]
= T

[
1 0′

−(G′G)−1G′F 0

]
= TMT .

where the first and second equalities follow from the definition of SF and PT , respectively. Since

tr(MT ) = 1, the trace result follows immediately.

b) Follows immediately from the definition of SF .

c) Rearrange terms within the quadratic forms as follows

(
F ′tPTFs

) (
F ′t′PTFs′

) (
F ′t′PTFs′′

)
=
(
F ′tPTFs

) (
F ′s′PTFt′

) (
F ′t′PTFs′′

)
;

then using the commutative property of the trace to write

tr
[(
F ′tPTFs

) (
F ′s′PTFt′

) (
F ′t′PTFs′′

)]
= tr

[(
PTFsF

′
s′
) (

PTFt′F
′
t′
) (

PTFs′′F
′
t

)]
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so that

T∑
t′=1

tr
[(

PTFsF
′
s′
) (

PTFt′F
′
t′
) (

PTFs′′F
′
t

)]
= T × tr

[(
PTFt′F

′
t′
)
MT

(
PTFs′′F

′
t

)]
,

where the last equality follows from 2.a. Now, notice that the matrix MT is idempotent and MTPT =

PT . To see this, write

SF =
1

T

[(
F′F F′G
G′F G′G

)]
=

1

T

[(
A C′

C D

)]
.

Using the formula for the partitioned inverse, we have

S−1
F =

1

T

 (
A−C′D−1C

)−1
−
(
A−C′D−1C

)−1
C′D−1

−D−1C
(
A−C′D−1C

)−1
D−1 + D−1C

(
A−C′D−1C

)−1
C′D−1


so that

PT = S−1
F −

1

T

[
0 0′

0 (G′G)−1

]
=

1

T

 (
A−C′D−1C

)−1
−
(
A−C′D−1C

)−1
C′D−1

−D−1C
(
A−C′D−1C

)−1
D−1C

(
A−C′D−1C

)−1
C′D−1

 .
From which it readily follows that MTPT = PT . Hence,

T∑
t′=1

(
F ′tPTFs

) (
F ′t′PTFs′

) (
F ′t′PTFs′′

)
= T × tr

[(
PTFs′F

′
s′′
) (

MTPTFs′′′F
′
t

)]
= T × tr

[(
PTFs′F

′
s′′
) (

PTFs′′′F
′
t

)]
.

d) The proof is analogous to the one of 2.c but using 2.b instead of 2.a in the last step.

e) Rearrange terms within the quadratic forms as follows:

(
F ′tPTFs

) (
F ′tPTFs′

) (
F ′t′PTFs′′

) (
F ′t′PTFs′′′

)
=
(
F ′sPTFt

) (
F ′tPTFs′

) (
F ′s′′PTFt′

) (
F ′t′PTFs′′′

)
;

then, using the commutative property of the trace, write

tr
[(
F ′sPTFt

) (
F ′tPTFs′

) (
F ′s′′PTFt′

) (
F ′t′PTFs′′′

)]
= tr

[(
PTFtF

′
t

) (
PTFs′F

′
s′′
) (

PTFt′F
′
t′
) (

PTFs′′′F
′
s

)]
so that

T∑
t=1

T∑
t′=1

tr
[(

PTFtF
′
t

) (
PTFs′F

′
s′′
) (

PTFt′F
′
t′
) (

PTFs′′′F
′
s

)]
= T 2 × tr

[(
PTFs′F

′
s′′
) (

PTFs′′′F
′
s

)]
,

where the last equality follows from 2.a and again using the fact that MTPT = PT .

f) The proof is analogous to the one of 2.c but using 2.b instead of 2.a in the last step.

g) The proof is analogous to the one of 2.c but using correspondingly 2.b and 2.a in the last step. 2
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Lemma 3. Under Assumptions B

E(ekvek′v′ek′′v′′ek′′′v′′′) =
T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θkhθk′hθk′′h′θk′′′h′φuvφuv′φu′v′′φu′v′′′

+
T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θkhθk′h′θk′′hθk′′′h′φuvφu′v′φuv′′φu′v′′′

+
T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θkhθk′h′θk′′h′θk′′′hφuvφu′v′φu′v′′φuv′′′

+
T∑
u=1

N∑
h=1

θkhθk′hθk′′hθk′′′hφuvφuv′φuv′′φuv′′′κε.

Proof of Lemma 3

From Assumption B we can write eit =
∑N

h=1

∑T
u=1 θihεhuφut, and hence

E(ekvek′v′ek′′v′′ek′′′v′′′) =
N∑
h=1

N∑
h′=1

N∑
h′′=1

N∑
h′′′=1

θkhθk′h′θk′′h′′θk′′′h′′′

T∑
u=1

T∑
u′=1

T∑
u′′=1

T∑
u′′′=1

φuvφu′v′φu′′v′′φu′′′v′′′E(εhuεh′u′εh′′u′′εh′′′u′′′).

For a given h in each of the four cross-sectional sums, the expectations will be different from zero only

if:

1) u = u′ = u′′ = u′′′, which are T elements with εhuεh′uεh′′uεh′′′u,

2) u = u′ 6= u′′ = u′′′, which are T (T − 1) elements with εhuεh′uεh′′u′′εh′′′u′′ ,

3) u = u′′ 6= u′ = u′′′, which are T (T − 1) elements with εhuεh′uεh′′u′εh′′′u′ , and

4) u = u′′′ 6= u′ = u′′, which are T (T − 1) elements with εhuεh′u′εh′′u′εh′′′u,

while all the remaining ones are zero. Similarly, for a given u in each of the four times-series sums,

the expectations will be different from zero only if:

i) h = h′ = h′′ = h′′′, which are N elements with εhuεhu′εhu′′εhu′′′ ,

ii) h = h′ 6= h′′ = h′′′, which are N(N − 1) elements with εhuεhu′εh′′u′′εh′′u′′′ ,

iii) h = h′′ 6= h′ = h′′′, which are N(N − 1) elements with εhuεh′u′εhu′′εh′u′′′ , and

iv) h = h′′′ 6= h′ = h′′, which are N(N − 1) elements with εhuεh′u′εh′u′′εhu′′′ .

while all the remaining ones are zero. Hence, when considering both types of sums altogether we end

up with sixteen cases that we label by (i, j) where i = 1, ..., 4 refers to the different cases we classify

the u’s, and j = i, ..., iv to the different cases we classify the h’s.

Then, notice that cases (2, iii), (2, iv), (3, ii), (3, iv), (4, ii) and (4, iii), each of them containing

N(N − 1)T (T − 1) elements, are zero in expectation. Next, Grouping terms (4.iv), (4, i) and (1, iv),
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we obtain

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θkhθk′h′θk′′h′θk′′′hφuvφu′v′φu′v′′φuv′′′ −
T∑
u=1

N∑
h=1

θkhθk′hθk′′hθk′′′hφuvφuv′φuv′′φuv′′′ .

Doing the same with (3, iii), (3, i) and (1, iii), and (2, ii), (2, i) and (1, ii), we obtain analogous

expressions, which, collected with (1, i) yield the result. 2

Lemma 4. Under Assumption B there exists a constant M <∞ such that

a)
∑N

i=1 θ
2
ih ≤M .

b)
∑T

u=1 φut ≤M .

c)
∑T

u=1 φutφus ≤M .

d)
∑N

j=1 θjh ≤M .

Proof of Lemma 4

a) Assumption B2 implies that all eigenvalues of ΘΘ′ are bounded and therefore it also implies

tr(ΘΘ′) =
∑N

i=1

∑N
h=1 θ

2
ih = O(N). This fact, together with Assumption B3, implies that also all

row and column sums are bounded, so also
∑N

i=1 θ
2
ih is.

b) Again by Assumption B2, one has that tr(Φ′Φ) =
∑T

t=1

∑T
u=1 φ

2
ut = O(T ) and, hence,

∑T
u=1 φ

2
ut =

O(1). The result then follows by noticing that, by Hölder’s inequality,

T∑
u=1

φut ≤
(

T∑
u=1

φ2
ut

)1/2

≤M.

c) Similarly,
T∑
u=1

φutφus ≤
(

T∑
u=1

φ2
ut

)1/2( T∑
u=1

φ2
us

)1/2

≤M

where the first inequality follows from Cauchy-Schwarz (CS, henceforth) and the last one from Lemma

4.a applied to Φ.

d) Same as Lemma 4.b but using tr(ΘΘ′) instead. 2

Proof of Lemma 1

a) Start by writing

c̃it − ĉit = L̃′iF̃t − L̂′iF̂t (12)

= (F̃t −H ′Ft)′H−1Li − (F̂t −H ′RFt)′H−1
R Li

+F ′tH(L̃i −H−1Li)− F ′tHR(L̂i −H−1
R Li)

+(F̃t −H ′Ft)′(L̃i −H−1Li)− (F̂t −H ′RFt)′(L̂i −H−1
R Li),
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where the second equality follows from

c̃it − cit = (F̃t −H ′Ft)′H−1Li + F ′tH(L̃i −H−1Li) + (F̃t −H ′Ft)′(L̃i −H−1
i Li)

and

ĉit − cit = (F̂t −H ′RFt)′H−1
R Li + F ′tHR(L̂i −H−1

R Li) + (F̂t −H ′RFt)′(L̂i −H−1
R Li).

Since the first factor in the restricted model is identified, HR is block diagonal with zeros in the

first line and column except for the element in the (1, 1) position. Hence, defining as H̄R the square

submatrix of dimensions r − 1 obtained by deleting the first row and column from HR, we can write

(F̃t −H ′Ft)′H−1Li − (F̂t −H ′RFt)′H−1
R Li = (F̃t −H ′Ft)′H−1Li + (f̂t − ft)λi + (ĝt − H̄Rgt)

′H̄Rγi.

Replacing the expression for the unrestricted estimator, (F̃t −H ′Ft)′H−1Li, (see e.g. the proof of

Theorem 3 Bai (2003) for the corresponding derivation) we obtain

LiH
′−1(F̃t −H ′Ft) =

1

N
Li

(
L′L

N

)−1 N∑
j=1

Ljejt +Op

(
1

δ2
NT

)
. (13)

Next, defining S−1
Γ = [N−1

∑N
i (γi − γ)(γi − γ)′]−1 and using the partitioned inverse formula we can

write (
L′L

N

)−1

=

(
1 + γ′S−1

Γ γ −γ′S−1
Γ

−S−1
Γ γ S−1

Γ

)
,

and given that under H0 Li is equal to (1, γ′i)
′ we can write the first term in the right hand side of

(13) as

1

N
Li

(
L′L

N

)−1 N∑
j=1

Ljejt = et + etγ
′S−1

Γ γ − etγ′iS−1
Γ γ − 1

N
γ′S−1

Γ

N∑
j=1

γjejt +
1

N
γ′iS

−1
Γ

N∑
j=1

γjejt

= et +
1

N
(γi − γ)′ S−1

Γ

N∑
j=1

(γj − γ)ejt, (14)

where et = yt − ft − γ′gt. Using the same asymptotic representation for γiH̄
′−1
R (ĝt − H̄Rgt), and

accounting for the fact that the r − 1 factors in the restricted model are also estimated by PCA but

using as data the matrix of demeaned data yit − ȳt, we can write

γiH̄
′−1
R (ĝt − H̄Rgt) =

1

N
(γi − γ)′ S−1

Γ

N∑
j=1

(γj − γ)(ejt − et) +Op

(
1

δ2
NT

)
. (15)
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Expand the products in the first term of the right hand side of (15) to obtain

1

N
(γi − γ)′ S−1

Γ

N∑
j=1

(γj − γ)(ejt − et) =
1

N
γ′iS

−1
Γ

N∑
j=1

(γjejt − γejt − γjet + γet)

− 1

N
γ′S−1

Γ

N∑
j=1

(γjejt − γejt − γjet + γet)

=
1

N
(γi − γ)′ S−1

Γ

N∑
j=1

γjejt −
1

N
(γi − γ)′ S−1

Γ

N∑
j=1

γejt

=
1

N
(γi − γ)′ S−1

Γ

N∑
j=1

(γj − γ)ejt. (16)

As the estimator for ft in the restricted model is simply the cross sectional mean, we have that

(f̂t − ft)λi = et which together with (14) and (16) yields

(F̃t −H ′Ft)′H−1Li − (F̂t −H ′RFt)′H−1
R Li = (F̃tH

−1 − F̂tH−1
R )′Li = Op

(
1

δ2
NT

)
. (17)

For what concerns the loadings, we can use the asymptotic representation in Bai (2003) directly to

write

F ′tH(L̃i −H−1Li) =
1

T
F ′t

(
F′F

T

)−1 T∑
s=1

Fseis +Op

(
1

δ2
NT

)
, (18)

for the unrestricted estimator and, using the fact that for the restricted estimator under the null

λ̂i − λi = 0, we can write compactly

1

T
g′t

(
G′G

T

)−1 T∑
s=1

gs (eis − et) =
1

T
g′t

(
G′G

T

)−1 T∑
s=1

gseis

+
1

NT
g′t

(
G′G

T

)−1 T∑
s=1

N∑
j=1

gsejs +Op

(
1

δ2
NT

)
for the restricted estimator. The second term is of order (NT )−1/2 and hence negligible since it has

mean zero and variance equal to

1

N2T 2
E

 T∑
s=1

N∑
j=1

T∑
s′=1

N∑
j′=1

g′t

(
G′G

T

)−1

gsg
′
t

(
G′G

T

)−1

gs′E(ejsej′s′)


=

1

N2T 2
E

T∑
s=1

N∑
j=1

T∑
s′=1

N∑
j′=1

g′t

(
G′G

T

)−1

gsg
′
t

×
(

G′G

T

)−1

gs′
N∑
h=1

N∑
h′=1

T∑
u=1

T∑
u′=1

θjhθj′h′φusφu′s′E(εhuεh′u′)

=
1

N2T 2
E

T∑
s=1

N∑
j=1

T∑
s′=1

N∑
j′=1

g′t

(
G′G

T

)−1

gsg
′
t

(
G′G

T

)−1

gs′
N∑
h=1

T∑
u=1

θjhθj′hφusφu′s

= Op

(
1

NT

)
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by Assumption A1 and C and Lemmas 4.b and 4.d. We can therefore write

F ′tHR(L̂i −H−1
R Li) = g′tH̄R(γ̂i − H̄−1

R γi) =
1

T
g′t

(
G′G

T

)−1 T∑
s=1

gseis +Op

(
1

δ2
NT

)
. (19)

Using (18) and (19), we can write the difference between the unrestricted and restricted estimated

loadings as

F ′tH(L̃i −H−1Li)− F ′tHR(L̂i −H−1
R Li) =

1

T
F ′t

(
F′F

T

)−1 T∑
s=1

Fseis

1

T
g′t

(
G′G

T

)−1 T∑
s=1

gseis +Op

(
1

δ2
NT

)

=
1

T
F ′tPT

T∑
s=1

Fseis +Op

(
1

δ2
NT

)
. (20)

Finally, the above calculations also imply that

(F̃t −H ′Ft)′(L̃i −H−1Li)− (F̂t −H ′RFt)′(L̂i −H−1
R Li) = Op(δ

−2
NT ). (21)

Then, the result follows by replacing (17), (20) and (21) into (12).

b.i) Start by writing

N∑
i=1

T∑
t=1

eitrit =
N∑
i=1

T∑
t=1

[eitrit − E(eitrit)] +
N∑
i=1

T∑
t=1

E(eitrit). (22)

Defining r̊it = δ2
NT rit, we can write the first term of the right hand side of (22) as

1

δ2
NT

N∑
i=1

T∑
t=1

[eitr̊it − E(eitr̊it)]

where r̊it = Op(1) and as a consequence,

Op

(
1

δ2
NT

N∑
i=1

T∑
t=1

[eitr̊it − E(eitr̊it)]

)
≤ Op

(
1

δ2
NT

N∑
i=1

T∑
t=1

[e2
it − E(e2

it)]

)

= O

(
1

δ2
NT

)
Op

(√
NT

)
= o(
√
N)

where the first inequality comes from replacing r̊it with eit whereas the last equality follows from
√
T/N → 0 and

√
N/T → 0. As for the second term of the right hand side of (22), we have to show

that N−1/2
∑N

i=1

∑T
t=1E(eitrit) = op(1) for all the terms that compose rit, which in practice involves

writing the exact representations for F̃t −H ′Ft, F̂t −H ′RFt, (L̃i −H−1Li) and L̂i −H−1
R Li. For the

sake of brevity we will only show the argument for the terms involving L̃i −H−1Li, noticing that the

results for the other terms can be obtained with similar algebra.
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Since L̃ are the eigenvectors of (NT )−1X ′X, and F̃′F̃/T is a diagonal matrix with the corresponding

eigenvalues on the diagonal, [(NT )−1X ′X]L̃ = L̃(F̃
′
F̃/T ), so that

L̃ =[(NT )−1X ′X]L̃
(
F̃′F̃/T

)−1
.

Then, by noticing that X ′X = LF′FL′+LF′e+eFL′+e′e, we can write the N×r matrix of estimated

loadings of the unrestricted model as

L̃ = LΣFΣ̃LL̃Σ̃−1
F +

LF′eL̃

NT
Σ̃−1
F +

e′F

T
Σ̃LL̃Σ̃−1

F +
e′eL̃

NT
Σ̃−1
F .

For the i’th row of L we have

L̃i −H−1Li = Σ̃−1
F Σ̃LL̃

1

T

T∑
s=1

Fseis + Σ̃−1
F

1

NT

N∑
j=1

T∑
s=1

L̃jejseis + Σ̃−1
F

1

NT

N∑
j=1

T∑
s=1

L̃jejsF
′
sLi

where the first term delivers the asymptotic distribution of the test while the remaing two contribute

to rit through F ′tH
(
L̃i −H−1Li

)
. So it remains to show that

E

 1√
N

N∑
i=1

T∑
t=1

F ′tHΣ̃−1
F

1

NT

N∑
j=1

T∑
s=1

L̃jejseiseit

 = op(1) (23)

and

E

 1√
N

N∑
i=1

T∑
t=1

F ′tHΣ̃−1
F

1

NT

N∑
j=1

T∑
s=1

L̃jejsF
′
sLieit

 = op(1). (24)

As for (23), add and subtract (NT )−1
∑N

i=1

∑T
t=1

∑N
j=1

∑T
s=1 F

′
tLjejseiseit and use the normalization

Σ̃−1
F = Ir to write

E

 1

NT

N∑
i=1

T∑
t=1

 N∑
j=1

T∑
s=1

F ′tHL̃jejseis

 eit

 = E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tLjejseiseit (25)

+
1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tH(L̃j −H−1Lj)ejseiseit


Replace the expressions for ejs, eis and eit in the first term of the right hand side of (25) to obtain

E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tLj

T∑
u=1

T∑
u′=1

T∑
u′′=1

N∑
h=1

N∑
h′=1

N∑
h′′=1

θjhθih′θih′′φusφu′sφu′′tE (εhuεh′u′εh′′u′′ |L)


≤ 1

N
max
t
E(||Ft||2) max

j
E(||Lj ||2)

N∑
i=1

N∑
h=1

θ2
ih

N∑
j=1

θjh
1

T

T∑
u=1

T∑
s=1

φ2
us

T∑
t=1

φut = O(1)
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by Assumption A2, B and C and Lemma 4.a, 4.b and 4.d. The second term of the right hand side of

(25) (omitting H since ||H|| = Op(1)) is equal to

E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′t(L̃j −H−1Lj)ejseiseit


≤ max

t
E||Ft||2

E 1

N

N∑
j=1

∥∥∥L̃j −H−1Lj

∥∥∥2

1/2  1

NT 2
E

N∑
j=1

(
N∑
i=1

T∑
s=1

T∑
t=1

ejseiseit

)2
1/2

= O

(
1

δNT

)
O
(√

T
)

= o(
√
N).

where the inequality follows from CS and the rates from Theorem 2 in Bai (2003) and the weak

dependence of the errors, respectively. Notice that the O
(
δ−1
NT

√
T
)
term either gives rise to a O(1)

term or to a O(
√
T/
√
N). The first one is clearly o(

√
N) as required, whereas the latter is o(

√
N) as

long as
√
T/N → 0, which is assumed.

As for (24), adding and subtracting 1
NT

∑N
i=1

∑T
t=1

∑N
j=1

∑T
s=1 F

′
tLjejsF

′
sLieit and using again the

normalization Σ̃−1
F = Ir we obtain

E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tHL̃jejsF
′
sLieit

 = E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tLjejsF
′
sLieit

 (26)

+E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tH(L̃j −H−1Lj)ejsF
′
sLieit

 .
The first term of the right hand side of (26) is

E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tLjejsF
′
sLieit

 = E

 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′tLjF
′
sLiE (eitejs|L,F)


≤ 1

NT

(
max
t
E||Ft||2 max

j
E||Lj ||2

)2

×
N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

E (eitejs|L,F)

= O(1)

by Assumptions A, B and C, and by noticing that E (eitejs|L,F) =
∑N

h=1

∑T
u=1 θihθjhφusφut so that

1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

N∑
h=1

T∑
u=1

θihθjhφusφut =

N∑
h=1

 N∑
i=1

θih

N∑
j=1

θjh

 T∑
u=1

(
T∑
t=1

φut

T∑
s=1

φus

)

≤ 1

NT
M4 ×N × T = O(1)
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by Lemmas 4.b and 4.d. The second term of the right hand side of (26) is also O(1), since

E

∥∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

N∑
j=1

T∑
s=1

F ′t(L̃j −H−1Lj)ejsF
′
sLieit

∥∥∥∥∥∥ ≤

 1

N
E

N∑
j=1

∥∥∥L̃j −H−1Lj

∥∥∥2

1/2

×

 1

NT 2
E

N∑
j=1

∥∥∥∥∥
N∑
i=1

T∑
t=1

T∑
s=1

FtF
′
sLiejseit

∥∥∥∥∥
2
1/2

= O

(
1

δNT

)
O
(√

N
)

= o(
√
N),

where the inequality follows from CS applied to the sum over j, and the rates from Theorem 2 in Bai

(2003) and by noticing that

1

NT 2
E

N∑
j=1

∥∥∥∥∥
N∑
i=1

T∑
t=1

T∑
s=1

FtF
′
sLiejseit

∥∥∥∥∥
2

≤ max
t,s,i

E||FtF ′sLi||4

× 1

NT 2

N∑
j=1

E

[
N∑
i=1

T∑
t=1

T∑
s=1

N∑
i′=1

T∑
t′=1

T∑
s′=1

ejsejs′eitei′t′

]
≤ M ×O(N),

by Assumptions A, B and C and by using Lemma 3 with k = j, k′ = j, k′′ = i, k′′′ = i′ and v = s, v′ =

s′, v′′ = t, v′′′ = t′ and then applying repeatedly Lemma 4. Tedious but otherwise straightforward

calculations applied to the other elements of rit show that those terms are all negligible.

b.ii) Use the CS inequality to write

1√
N

N∑
i=1

T∑
t=1

(c̃it − cit) rit ≤
[

1√
N

N∑
i=1

T∑
t=1

(c̃it − cit)2

]1/2 [
1√
N

N∑
i=1

T∑
t=1

r2
it

]1/2

=
1√
N
Op

(√
NT

δNT

)
Op

(√
NT

δ2
NT

)
= Op

(√
NT

δ3
NT

)
= o(
√
N)

where the rates follows from Theorem 3 in Bai (2003) and Lemma 1.a. Then the result follows from
√
T/N → 0 and

√
N/T → 0. 2

Proof of Theorem 3

First, we restate Theorem 5.20 in White (2000) for convenience of the reader:

Lemma 5. Let {Xi, i = 1, ...N} with N →∞ be a sequence of scalars with mean µi = E(Xi) = 0 and

variance σ2
i = var(Xi) such that E|Xi|2+ε < ∆ <∞ for some ε > 0 and for all i. Also, let {Xi} have

mixing coeffi cients α → 0 as N → ∞. If σ2
N ≡ V

(
1√
N

∑N
i=1Xi

)
> c > 0 for N suffi ciently large,

then:
√
N

N∑
i=1

Xi

σN

d→ N(0, 1).
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To apply Lemma 5, we first construct the variables Xi as

Xi =
T∑
t=1

[Zit − E(Zit)] ,

where Zit = ZAit +ZBit−ZCit with ZAit = 2eit (c̃it − ĉit), ZBit = (c̃it − ĉit)2 and ZCit = 2 (c̃it − ĉit) (c̃it − cit).

Similarly, we also define Xi = XAi +XBi −XCi , where

XAi = 2
T∑
t=1

eitait − E
(

2
T∑
t=1

eitait

)
, XBi =

T∑
t=1

a2
it − E

(
T∑
t=1

a2
it

)
,

and

XCi = 2

T∑
t=1

ait (c̃it − cit)− E
[

2

T∑
t=1

ait (c̃it − cit)
]
,

so that

σ2
N = V

(
1√
N

N∑
i=1

Xi

)
=

1

N
V

(
N∑
i=1

Xi

)
=

1

N
V

{
N∑
i=1

T∑
t=1

[Zit − E(Zit)]

}
.

In terms of the mean and the variance of the QNT test statistic, notice that

µQNT = lim
N,T→∞

1

σ2
∞

N∑
i=1

E(Xi) = lim
N,T→∞

1

σ2
∞

N∑
i=1

T∑
t=1

E(Zit)

and

σ2
QNT

= lim
N,T→∞

1

σ4
∞
V

(
N∑
i=1

Xi

)
= lim

N,T→∞

1

σ4
∞
V

(
N∑
i=1

T∑
t=1

[Zit − E(Zit)]

)
.

The array Xi has, therefore, mean µi = E(Xi) = 0 by construction and variance σ2
i ≡ V (Xi). The

proof of Theorem 3 consists in the following steps: 1) Calculation of µQNT and σ
2
QNT

, 2) Verifying the

conditions for the CLT to hold, and 3) Verifying that the mixing condition holds.

Step 1: Calculation of µQNT and σ
2
QNT

Recalling that the error structure is

eit =

T∑
u=1

N∑
h=1

θihεhuφut,

and defining ait = c̃it − ĉit, the mean µQNT is

1

σ2
∞

N∑
i=1

T∑
t=1

E(Zit) =
1

σ2
∞
E

[
N∑
i=1

T∑
t=1

2eitait +
N∑
i=1

T∑
t=1

a2
it − 2

N∑
i=1

T∑
t=1

ait (c̃it − cit)
]

=
1

σ2
∞
E (ANT + BNT − CNT ) .
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Starting with the first term, Lemma 1 allows us to write

E (ANT ) =
2

T
E

[
T∑
t=1

N∑
i=1

(
F ′tPT

T∑
s=1

Fs

)
E (eiseit|F)

]
(27)

=
2

T

N∑
i=1

N∑
h=1

θ2
ihE

[
T∑
t=1

T∑
s=1

T∑
u=1

(F ′tPTFs)φutφus

]

=
2

T
tr(ΘΘ′)E

[
T∑
t=1

T∑
s=1

T∑
u=1

(F ′tPTFs)φutφus

]
,

where the first equality use Assumption C and the second equality follows from the definition of the

trace. Regarding its variance, write

E(A2
NT ) =

4

T 2
E

[
N∑
i=1

N∑
i′=1

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

(
F ′tPTFs

) (
F ′t′PTFs′

)
E (eitei′t′eisei′s′ |F)

]
and invoke Lemma 3 with v = t, v′ = t′, v′′ = s, v′′′ = s′, k = i, k′ = i′, k′′ = i and k′′′ = i′ to obtain

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θihθi′h′θih′θi′hφutφu′t′φu′sφus′ +

T∑
u=1

T∑
u′ 6=u

N∑
h=1

N∑
h′ 6=h

θ2
ihθ

2
i′h′φutφu′t′φusφu′s′ (28)

+
T∑
u=1

T∑
u′′=1

N∑
h=1

N∑
h′′=1

θihθi′hθih′′θi′h′′φutφut′φu′′sφu′′s′ +
T∑
u=1

N∑
h=1

θ2
ihθ

2
i′hφutφut′φusφus′κε.

As for the square of the expectation, from (27) we have

E2 (ANT ) =
4

T 2
EF

[
N∑
i=1

N∑
i′=1

T∑
t=1

T∑
s=1

T∑
t′=1

T∑
s′=1

(
F ′tPTFs

) (
F ′t′PTFs′

)
× (29)(

N∑
h=1

T∑
u=1

N∑
h′=1

T∑
u′=1

θ2
ihθ

2
i′h′φutφusφu′t′φu′s′

)]
.

We immediately notice that (29) simplifies with the second term of (28), so that

V (ANT ) = EF

[
4

T 2

N∑
i=1

N∑
i′=1

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

(
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,

where
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≤ 4κεM
2 × N

T 2

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

T∑
u=1

(
F ′tPTFs

) (
F ′t′PTFs′

)
φutφut′φusφus′

≤ 4κεM
2 × N

T 2
||PT ||2 max

t,t′,s,s′
E||F ′tFsF ′t′Fs′ ||

T∑
u=1

T∑
t=1

φut

T∑
t′=1

φut′

T∑
s=1

φus

T∑
s′=1

φus′

= O

(
N

T

)
46



by Lemma 4.a, Lemma 4.b, Assumption A and the fact that the norm of PT is bounded by Assumption

B. After rescaling by
√
N this term op(1). This guarantees which are O(N). As for (7), following

analogous steps and using Lemma 1 again we can write

E (BNT ) =
1

T 2

N∑
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N∑
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θ2
ihE
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]
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T 2
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)
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]
and

E
(
B2
NT

)
= E

 T∑
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N∑
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(
1

T
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)2(
1

T
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)2
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=
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×
(
F ′t′PTFs′′

) (
F ′t′PTFs′′′

)
E (eiseis′ei′s′′ei′s′′′ |F)

]
.

By Assumption B we can rewrite E (eiseis′ei′s′′ei′s′′′ |F) in terms of the iid shocks, and, by invoking

Lemma 3 with v = s, v′ = s′, v′′ = s′′, v′′′ = s′′′, k = i, k′ = i, k′′ = i′ and k′′′ = i′, we obtain

T∑
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T∑
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N∑
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T∑
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2
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2
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The square of the expectation is, instead, equal to

E2(BNT ) =
1

T 4
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[
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T∑
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T∑
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T∑
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]
.

We immediately notice that (31) simplifies with the second term of (30), so that the variance is

V (BNT ) = E

[
1
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]
,

where
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where the last equality follows from Lemma 4.a, Lemma 4.b and Assumption A. Next, to calculate

mean and variance of CNT we use again Lemma 1 to write

CNT = 2
T∑
t=1

N∑
i=1

(c̃it − ĉit)(c̃it − cit)

=
T∑
t=1

N∑
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(
1

T
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T∑
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) 1

N
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T
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−1
F
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Fs′eis′

+Op

(
1

δ2
NT

)

where we have used the expression for c̃it − cit in Bai (2003), (see e.g. proof of Theorem 3). Similar

calculations to the ones just shown imply that

E(CNT ) =
2
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)
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]
.

Regarding the variance, the expectation of the square involves computing the following four terms
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and

CIV = E

[
N∑
i=1

N∑
i′=1

T∑
t=1

T∑
t′=1

4aitai′t′

(
1

T
F ′tS

−1
F

T∑
s′′=1

Fs′′eis′′

)(
1

T
F ′t′S

−1
F

T∑
s′′′=1

Fs′′′ei′s′′′

)]

where recall ait = T−1F ′tPT
∑T

s=1 Fseis. Then, using Lemma 3 with v = s, v′ = s′, v′′ = t, v′′′ = t′,

k = i, k′ = i′, k′′ = j and k′′′ = j′, and collecting terms we have that
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Repeated application of Lemma 3 for the remaining cases delivers
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and a similar expression for CIII , and
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The square of the expectation is
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Now, notice that the first term of (32) cancels out with one third of the first term of CI , the second

term of (32) cancels out with the second term of CIV while, finally, the third term of (32) cancels with

the second term of CII (and also CIII). By repeated application of Lemma 4 and assumption A1, we

see that the remaining terms of CI , CII and CIII are negligible. The variance is then given by the first
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term of CIV , that is
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where, again by Lemma 4.a, Lemma 4.b and Assumption A,
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As for the covariance terms, tedious but otherwise straightforward computations yield
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where remAB, remAC and remBC are O(N/T ). Finally, collect terms and apply Lemma 2.f and Lemma

2.g to recognize that V (ANT ) +V (CNT ) = 2Cov (ANT , CNT ) which, together with Cov (ANT ,BNT ) =

Cov (BNT , CNT ) imply the only term relevant for σ2
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coincides with V (BNT ). Then, applying Lemma

2.e to V (BNT ), we can write
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Consequently, we have
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As for the mean, applying Lemma 2.a to the sum
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Step 2: Verifying the conditions for the CLT hold

To check that the condition E|Xi|2+ε < ∆ <∞ for some ε > 0 and for all i holds, first notice that,

since |a+ b+ c|2+ε ≤ 9
(
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)
,
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The second term of (33) is O(1) since
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by assumption A and Lemma 4.a and 4.c. Regarding the first term of (33), define q = 2 + ε and p its

Hölder conjugate (i.e. such that 1/p+ 1/q = 1) and apply Hölder’s inequality to obtain

E

[
T∑
t=1

eitait

]q
≤ E

[
T∑
t=1

|eitait|q
]
≤ E

[
T∑
t=1

|eitait|4
]
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since q < 4. Next, focus on the inner expectation ot E (eitait)
4, that is

1

T 4
E

(
T∑
s=1

T∑
s′=1

T∑
s′′=1

T∑
s′′′=1

(
F ′tPTFs

) (
F ′tPTFs′

) (
F ′tPTFs′′

) (
F ′tPTFs′′′

)
E
(
eiseis′eis′′eis′′′e

4
it

∣∣F)) ,
and show that this term is O(T−1). Specifically, we have that

E
(
eiseis′eis′′eis′′′e

4
it

∣∣F) ≤ max
i,t

E(e4
it)E (eiseis′eis′′eis′′′ |F) ,

where F ={F1, ..., FT }, and applying Lemma 3 with k = k′ = k′′ = k′′′ = i, v = s, v′ = s′, v′′ = s′′ and

v′′′ = s′′′ we obtain

E (eiseis′eis′′eis′′′ |F) =

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θ2
ihθ

2
ih′φusφus′φu′s′′φu′s′′′

+

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θ2
ihθ

2
ih′φusφu′s′φus′′φu′s′′′

+

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θ2
ihθ

2
ih′φusφu′s′φu′s′′φus′′′

+

T∑
u=1

N∑
h=1

θ4
ihφusφus′φus′′φus′′′κε.

Denote the four terms obtained by adding the sums over s and s′ and the factors as I, II, III and

IV . Then, write term I as follows:

I =
1

T 4
E

[
T∑
s=1

T∑
s′=1

T∑
s′′=1

T∑
s′′′=1

(
F ′tPTFs

) (
F ′tPTFs′

) (
F ′tPTFs′′

) (
F ′tPTFs′′′

)
N∑
h=1

θ2
ih

N∑
h′=1

θ2
ih′

T∑
u=1

φusφus′

T∑
u′=1

φu′s′′φu′s′′′

]

≤ M4

T 4
E

[
T∑
s=1

T∑
s′=1

T∑
s′′=1

T∑
s′′′=1

(
F ′tPTFs

) (
F ′tPTFs′

) (
F ′tPTFs′′

) (
F ′tPTFs′′′

)]

since
∑N

h=1 θ
2
ih ≤M = O(1) and similarly for

∑N
h′=1 θ

2
ih′ , whereas

∑T
u=1 φusφus′ and

∑T
u′=1 φu′s′′φu′s′′′

by lemmas 4.a and 4.c respectively. The remaining term only involves factors and can be written as

1

T 4
E

[(
F ′tPTFt

) T∑
s=1

T∑
s′=1

T∑
s′′=1

T∑
s′′′=1

(
F ′sPTFs′

) (
F ′tPTFs′′

) (
F ′tPTFs′′′

)]

≤ 1

T 4
||PT ||4E

T∑
s=1

T∑
s′=1

T∑
s′′=1

T∑
s′′′=1

F ′tFtF
′
sFs′F

′
tFs′′F

′
tFs′′′ = O(T−1)

by stationarity of Ft and assuming Ft has bounded eight moments, so that finally I is O(T−1), implying

E
[∑T

t=1 |eitait|
4
]

= O(1). The same steps applied to II, III and IV yield the same result. Similar

algebra for XBi and X
C
i show that also E|XCi |

2+ε
and E|XCi |

2+ε
are O(1) so that finally also E|Xi|

2+ε

is and the condition is verified.
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Step 3: Verifying that the mixing condition hold

The second requirement for Lemma 5 is that the α-mixing coeffi cient go to zero as the sample size

increases. Since ρ-mixing implies α-mixing (see e.g. Bradley (2005)), we show the former instead. To

do so, for −∞ ≤ J ≤ L ≤ ∞, define the σ-algebra FLJ as

FLJ = σ(Xk, J ≤ k ≤ L).

For any σ−field G, let L2(G) denote the space of square-integrable, G-measurable real valued random

variables. For each m ≥ 1, define the maximal correlation coeffi cient as follows

ρ(m) = sup |corr(f, g)|, f ∈ L2(F j−∞), g ∈ L2(F∞j+m)

where the sup is over all f, g and integer j. The sequence {Xi} is ρ-mixing process if ρ(m) → 0

as m → ∞. Clearly, the mixing formulation relies on the ordering of the variables. Given that in

many applications there is cross-sectional dependence but no natural ordering of the variables, here

we assume that there is some permutation of the data for which {Xi} is ρ-mixing. Since E(Xi) = 0,

we check that corr(Xi, Xj) = E (XiXj) /
√
E(X2

i )E(X2
j ) → 0 as |i − j| → ∞. We first show that

E(X2
i ) = O(1) for all i. To do so, recall Xi is equal to Xi = XAi + XBi − XCi , so that E(X2

i ) =

V (XAi ) + V (XBi ) + V (XCi ) + 2E(XAi X
B
i )− 2E(XBi X

C
i )− 2E(XAi X

C
i ). Then, consider for instance the

first term,

V (XAi ) = E

(2
T∑
t=1

eitait

)2
− E2

[
2

T∑
t=1

eitait

]
and

E

(2

T∑
t=1

eitait

)2
 = E

[
4

T 2

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

(
F ′tPTFs

) (
F ′t′PTFs

)
eiteit′eiseis′eiteit′

]
= O(1)

E2

[
2

T∑
t=1

eitait

]
= E2

[
2

T

T∑
t=1

T∑
s=1

(
F ′tPTFs

)
eitait

]
= O(1)

by Lemma 3 and Assumption A. The same reasoning yields the same rates for the other terms of

E(X2
i ) so that finally E(X2

i ) = O(1) as desired. As for the numerator of the correlation coeffi cient,

the cross-expectations E(XiXj) are equal, for a generic i and j, to

E(XiXj) = E

[(
T∑
t=1

Zit − E (Zit)

)(
T∑
t′=1

Zjt′ − E
(
Zjt′

))]
=

T∑
t=1

T∑
t′=1

E
(
ZitZjt′

)
− E (Zit)E

(
Zjt′

)
.

Since Zit = ZAit + ZBit − ZCit, computing E(XiXj) involves several terms; specifically,

E(XiXj) =
∑

a∈{A,B,C}

∑
b∈{A,B,C}

T∑
t=1

T∑
t′=1

[
E(ZaitZ

b
jt′)− E(Zait)E(Zbjt′)

]
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Consider

E(ZAitZ
A
jt′)− E(ZAit )E(ZAjt′) = E

[
1

T 2

T∑
s=1

T∑
s′=1

(
F ′tPTFs

) (
F ′t′PTFs′

)
E
(
eiseitejs′ejt′

∣∣F)]

−E
[

1

T

T∑
s=1

(
F ′tPTFs

)
E (eiseit|F)

]
E

[
1

T

T∑
s′=1

(
F ′t′PTFs′

)
E
(
ejs′ejt′ |F

)]
.

Using Lemma 3 with k = k′ = i, k′′ = k′′′ = j, v = s, v′ = t, v′′ = s′ and v′′′ = t′, we have that

E(eisejs′eitejt′
∣∣F) is equal to

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θ2
ihθ

2
jh′φusφutφu′s′φu′t′ +

T∑
u=1

T∑
u′=1

N∑
h=1

N∑
h′=1

θihθih′θjhθjh′φusφu′tφus′φu′t′

+
T∑
u=1

T∑
u′=1

N∑
h=1
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θihθih′θjh′θjhφusφu′tφu′s′φut′ +
T∑
u=1

N∑
h=1

θ2
ihθ

2
jhφusφutφus′φut′κε.

As for the cross product of expectations, since

E (eiseit|F) =
T∑
u=1

N∑
h=1

T∑
u′=1

N∑
h′=1

θihθih′φusφu′tE(εhuεh′u′) =
T∑
u=1

N∑
h=1

θ2
ihφusφut,

we have that

E (eiseit|F)E(ejs′ejt′ |F) =
T∑
u=1

N∑
h=1

T∑
u′=1

N∑
h′=1

θ2
ihθ

2
jh′φusφu′s′φutφu′t′ .

Hence, we can write

E(ZAitZ
A
jt′) = IA + IIA + IIIA + IV A,

where

IA = E

[
1

T 2

T∑
s=1

(
F ′tPTFs

) T∑
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(
F ′t′PTFs′

) N∑
h=1

θ2
ih
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φusφus′φu′tφu′t′

]

cancels with E (eiseit|F)E(ejs′ejt′ |F), which follows from interchanging indices u and u′ in φus′φu′t in

the term φusφus′φu′tφu′t′ . Similarly,

IIA = E

[
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) N∑
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=
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but

1

T 2
E
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(
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) T∑
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T∑
u′=1

φu′s′φu′t′

]

≤ 1
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by Lemma 4.c and Assumption A. Hence, the order of magnitude of IIA depends on

N∑
h=1

θihθjh

N∑
h′=1

θih′θjh′ ,

where
∑N

h=1 θihθjh is the element (i, j) of the matrix ΘΘ′. By Lemma 4.a,
∑N

i=1 θ
2
ih = O(1) and∑N

h=1 θ
2
ih = O(1) which imply that the sum of the squares of each element in each column (and row)

of ΘΘ′ is also bounded. Then, it must be the case that the smallest squared element goes to zero;

otherwise, N times the minimum squared element would diverge to infinity and hence
∑N

i=1 θ
2
ih ≥

N mini θ
2
ih contradicts Assumption B. Therefore, there must be a j such that θjh → 0; and for this j,

the product θihθjh → 0 since θih is bounded. As a consequence, the mixing condition is satisfied. The

same reasoning applies to terms IIIA and IV A. To see this, write

IIIA = E

[
1

T 2

T∑
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(
F ′tPTFs

) T∑
s′=1

(
F ′t′PTFs′

) N∑
h=1

θihθjh

N∑
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θih′θjh′
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T∑
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]

and

IV A =
1

T 2

N∑
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θ2
ihθ

2
jh

(
F ′tPTFt′

) T∑
s=1

T∑
s′=1

(
F ′sPTFs′

) T∑
u=1

φusφus′φutφut′κε.

and follow the same steps as for term IIA. Similar algebra shows that also all terms involving B and C

behave in the same way and, under a suitable ordering of the elements, the mixing condition ρ(m)→ 0

as m = |i− j| → ∞ is satisfied for j and i suffi ciently far away. 2

Proof of Theorems 1 and 2

Theorems 1 and 2 are special cases of Theorem 3 imposing, respectively, Φ = IT and Θ = IN and

Φ = IT . The expressions for mean and variance of the Q1
NT and Q2

NT statistics then readily follow

by substituting the corresponding identity matrices in the asymptotic mean and variance of Q3
NT . 2
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